Модифицированная функция Бесселя первого рода для символьных выражений
бессели (ню, з)besseli( возвращает модифицированную функцию Бесселя первого рода Istart( z).nu,z)
Вычислите измененные функции Бесселя первого рода для этих чисел. Поскольку эти числа не являются символическими объектами, получаются результаты с плавающей запятой.
[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]
ans = 27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i
Вычислите измененные функции Бесселя первого рода для чисел, преобразованных в символические объекты. Для большинства символических (точных) чисел, besseli возвращает неразрешенные символьные вызовы.
[besseli(sym(0), 5), besseli(sym(-1), 2),... besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]
ans = [ besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]
Для символьных переменных и выражений: besseli также возвращает неразрешенные символьные вызовы:
syms x y [besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
ans = [ besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
Решите это дифференциальное уравнение второго порядка. Решения представляют собой модифицированные функции Бесселя первого и второго рода.
syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans = C2*besseli(nu, z) + C3*besselk(nu, z)
Убедитесь, что модифицированная функция Бесселя первого рода является действительным решением модифицированного дифференциального уравнения Бесселя.
syms nu z isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)... - (z^2 + nu^2)*besseli(nu, z) == 0)
ans = logical 1
Если первый параметр является нечетным целым числом, умноженным на 1/2, besseli переписывает функции Бесселя в терминах элементарных функций:
syms x besseli(1/2, x)
ans = (2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2))
besseli(-1/2, x)
ans = (2^(1/2)*cosh(x))/(x^(1/2)*pi^(1/2))
besseli(-3/2, x)
ans = (2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))
besseli(5/2, x)
ans = -(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 + 1)))/(x^(1/2)*pi^(1/2))
Дифференцируйте выражения, включающие измененные функции Бесселя первого рода:
syms x y diff(besseli(1, x)) diff(diff(besseli(0, x^2 + x*y -y^2), x), y)
ans = besseli(0, x) - besseli(1, x)/x ans = besseli(1, x^2 + x*y - y^2) +... (2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -... (besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
Звонить besseli для матрицы A и значение 1/2. Результатом является матрица модифицированных функций Бесселя besseli(1/2, A(i,j)).
syms x A = [-1, pi; x, 0]; besseli(1/2, A)
ans = [ (2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi] [ (2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2)), 0]
Постройте график измененных функций Бесселя первого рода для 0,1,2,3.
syms x y fplot(besseli(0:3, x)) axis([0 4 -0.1 4]) grid on ylabel('I_v(x)') legend('I_0','I_1','I_2','I_3', 'Location','Best') title('Modified Bessel functions of the first kind')

Запрос besseli для числа, которое не является символическим объектом, вызывает MATLAB
®besseli функция.
По крайней мере один входной аргумент должен быть скаляром, либо оба аргумента должны быть векторами или матрицами одного размера. Если один входной аргумент является скаляром, а другой - вектором или матрицей, besseli(nu,z) расширяет скаляр в вектор или матрицу того же размера, что и другой аргумент со всеми элементами, равными этому скаляру.
[1] Олвер, Ф. В. Дж. «Функции Бесселя целочисленного порядка». Справочник по математическим функциям с формулами, графиками и математическими таблицами. (М. Абрамовиц и И. А. Стегун, ред.). Нью-Йорк: Дувр, 1972.
[2] Антосевич, Х. А. «Функции Бесселя дробного порядка». Справочник по математическим функциям с формулами, графиками и математическими таблицами. (М. Абрамовиц и И. А. Стегун, ред.). Нью-Йорк: Дувр, 1972.