Сгенерируйте импульсные характеристики модели векторного исправления ошибок (VEC)
irf функция возвращает динамический ответ или функцию импульсной характеристики (IRF), к шоку с одним стандартным отклонением для каждой переменной в модели VEC (p - 1). Полностью заданный vecm объект модели характеризует модель VEC.
IRFs прослеживают эффекты инновационного шока для одной переменной на ответе всех переменных в системе. В отличие от этого разложение отклонения ошибки прогноза (FEVD) предоставляет информацию об относительной важности каждых инноваций во влиянии на все переменные в системе. Оценить FEVD модели VEC, охарактеризованной vecm объект модели, смотрите fevd.
дополнительные опции использования заданы одним или несколькими аргументами пары "имя-значение". Например, Response = irf(Mdl,Name,Value)'NumObs',10,'Method',"generalized" задает оценку обобщенного IRF для 10 моментов времени, запускающихся во время 0, во время который irf применяет шок, и заканчивающийся в период 9.
[ использование любая из комбинаций входных аргументов в предыдущих синтаксисах и возвращает более низкие и верхние доверительные границы, в течение каждого периода и переменной в IRF, 95%-го доверительного интервала на истинном IRF.Response,Lower,Upper] = irf(___)
Если вы задаете серию остаточных значений при помощи E аргумент пары "имя-значение", затем irf оценивает доверительные границы путем начальной загрузки заданных остаточных значений.
В противном случае, irf оценочные доверительные границы путем проведения симуляции Монте-Карло.
Если Mdl пользовательский vecm объект модели (объект, не возвращенный estimate или измененный после оценки), irf может потребовать объема выборки для симуляции SampleSize или преддемонстрационные ответы Y0.
NaN значения в Y0X, и E укажите на недостающие данные. irf удаляет недостающие данные из этих аргументов мудрым списком удалением. Каждый аргумент, если строка содержит по крайней мере один NaNто irf удаляет целую строку.
Мудрое списком удаление уменьшает объем выборки, может создать неправильные временные ряды и может вызвать E и X не синхронизироваться.
Если Method "orthogonalized", затем получившийся IRF зависит от порядка переменных в модели временных рядов. Если Method "generalized", затем получившийся IRF является инвариантным к порядку переменных. Поэтому эти два метода обычно приводят к различным результатам.
Если Mdl.Covariance диагональная матрица, затем получившиеся обобщенные и ортогонализируемые IRFs идентичны. В противном случае получившиеся обобщенные и ортогонализируемые IRFs идентичны только, когда первая переменная потрясает все переменные (то есть, все остальное являющееся тем же самым, оба метода дают к тому же значению Response(:,1,:)).
Данные о предикторе X представляет один путь внешних многомерных временных рядов. Если вы задаете X и модель VAR Mdl имеет компонент регрессии (Mdl.Beta не пустой массив), irf применяет те же внешние данные ко всем путям, используемым для оценки доверительного интервала.
irf проводит симуляцию, чтобы оценить доверительные границы Lower и Upper.
Если вы не задаете остаточные значения Eто irf проводит симуляцию Монте-Карло путем выполнения этой процедуры:
Симулируйте NumPaths пути к ответу длины SampleSize от Mdl.
Подходящий NumPaths модели, которые имеют ту же структуру как Mdl к путям к симулированному отклику. Если Mdl содержит компонент регрессии, и вы задаете Xто irf соответствует NumPaths модели к путям к симулированному отклику и X (те же данные о предикторе для всех путей).
Оцените NumPaths IRFs от NumPaths предполагаемые модели.
Для каждого момента времени t = 0, …, NumObs, оцените доверительные интервалы путем вычисления 1 – Confidence и Confidence квантили (верхние и нижние границы, соответственно).
Если вы задаете остаточные значения Eто irf проводит непараметрическую начальную загрузку путем выполнения этой процедуры:
Передискретизируйте, с заменой, SampleSize остаточные значения E. Выполните этот шаг NumPaths времена, чтобы получить NumPaths пути .
Сосредоточьте каждый путь загруженных остаточных значений.
Отфильтруйте каждый путь загруженных остаточных значений в центре через Mdl получить NumPaths загруженные пути к ответу длины SampleSize.
Полные шаги 2 - 4 симуляции Монте-Карло, но замена пути к симулированному отклику с загруженными путями к ответу.
[1] Гамильтон, анализ временных рядов Джеймса Д. Принстон, NJ: Издательство Принстонского университета, 1994.
[2] Йохансен, S. Основанный на вероятности вывод в векторных авторегрессивных моделях Cointegrated. Оксфорд: Издательство Оксфордского университета, 1995.
[3] Juselius, K. Модель VAR Cointegrated. Оксфорд: Издательство Оксфордского университета, 2006.
[4] Pesaran, H. H. и И. Шин. "Обобщенный Анализ Импульсной характеристики в Линейных Многомерных Моделях". Экономические Буквы. Издание 58, 1998, стр 17–29.