Дискриминантный анализ

Упорядоченный линейный и квадратичный дискриминантный анализ

Чтобы в интерактивном режиме обучить модель дискриминантного анализа, используйте приложение Classification Learner. Для большей гибкости обучите модель дискриминантного анализа использование fitcdiscr в интерфейсе командной строки. После обучения предскажите метки или оцените апостериорные вероятности путем передачи модели и данных о предикторе к predict.

Приложения

Classification LearnerОбучите модели классифицировать данные с помощью машинного обучения с учителем

Функции

развернуть все

fitcdiscrПодходящий классификатор дискриминантного анализа
makecdiscrСоздайте классификатор дискриминантного анализа из параметров
compactКомпактный классификатор дискриминантного анализа
cvshrinkПерекрестный подтвердите регуляризацию линейного дискриминанта
limeЛокальные поддающиеся толкованию объяснения модели агностические (LIME)
partialDependenceВычислите частичную зависимость
plotPartialDependenceСоздайте графики отдельного условного ожидания (ICE) и частичный график зависимости (PDP)
shapleyШепли оценивает
crossvalПерекрестный подтвержденный классификатор дискриминантного анализа
kfoldEdgeРебро классификации для перекрестной подтвержденной модели классификации
kfoldLossПотеря классификации для перекрестной подтвержденной модели классификации
kfoldfunПерекрестный подтвердите функцию для классификации
kfoldMarginПоля классификации для перекрестной подтвержденной модели классификации
kfoldPredictКлассифицируйте наблюдения на перекрестную подтвержденную модель классификации
lossОшибка классификации
resubLossОшибка классификации перезаменой
logpРегистрируйте безусловную плотность вероятности для классификатора дискриминантного анализа
mahalРасстояние Mahalanobis до средних значений класса классификатора дискриминантного анализа
nLinearCoeffsКоличество ненулевых линейных коэффициентов
compareHoldoutСравните точность двух моделей классификации с помощью новых данных
edgeРебро классификации
marginПоля классификации
resubEdgeРебро классификации перезаменой
resubMarginПоля классификации перезаменой
testckfoldСравните точность двух моделей классификации повторной перекрестной проверкой
predictПредскажите метки с помощью модели классификации дискриминантных анализов
resubPredictПредскажите метки перезамены модели классификации дискриминантных анализов
classifyКлассифицируйте наблюдения с помощью дискриминантного анализа

Классы

ClassificationDiscriminantКлассификация дискриминантных анализов
CompactClassificationDiscriminantКомпактный класс дискриминантного анализа
ClassificationPartitionedModelПерекрестная подтвержденная модель классификации

Темы

Обучите классификаторы дискриминантного анализа Используя приложение Classification Learner

Создайте и сравните классификаторы дискриминантного анализа и экспортируйте обученные модели, чтобы сделать предсказания для новых данных.

Контролируемое изучение рабочего процесса и алгоритмов

Изучите шаги для контролируемого изучения и характеристик непараметрической классификации и функций регрессии.

Параметрическая классификация

Категориальные данные об ответе

Классификация дискриминантных анализов

Изучите алгоритм дискриминантного анализа и как подбирать модель дискриминантного анализа к данным.

Создание модели дискриминантного анализа

Изучите, что алгоритм раньше создавал классификаторы дискриминантного анализа.

Создайте и визуализируйте классификатор дискриминантного анализа

Выполните линейную и квадратичную классификацию ирисовых данных Фишера.

Улучшение моделей дискриминантного анализа

Исследуйте и улучшите производительность модели дискриминантного анализа.

Упорядочите классификатор дискриминантного анализа

Сделайте более устойчивую и более простую модель путем удаления предикторов, не ставя под угрозу предсказательную силу модели.

Исследуйте гауссово предположение смеси

Дискриминантный анализ принимает, что данные прибывают из смешанной гауссовской модели. Изучите, как исследовать это предположение.

Предсказание Используя модели дискриминантного анализа

Поймите как predict классифицирует наблюдения с помощью модели дискриминантного анализа.

Визуализируйте поверхности решения различных классификаторов

В этом примере показано, как визуализировать поверхность решения для различных алгоритмов классификации.