Этот пример показывает, как создать, визуализировать и анализировать элементы антенны в Antenna Toolbox.
Задайте спиральную антенну с помощью элемента антенны helix
в библиотеке Antenna Modeling и Analysis.
hx = helix
hx = helix with properties: Radius: 0.0220 Width: 1.0000e-03 Turns: 3 Spacing: 0.0350 WindingDirection: 'CCW' FeedStubHeight: 1.0000e-03 GroundPlaneRadius: 0.0750 Tilt: 0 TiltAxis: [1 0 0] Load: [1x1 lumpedElement]
Используйте функцию show
, чтобы просмотреть структуру спиральной антенны. Спиральная антенна состоит из проводника спиральной формы на наземной плоскости. Наземная плоскость антенны находится в плоскости X-Y.
show(hx)
Измените следующие свойства спиральной антенны: Радиус = 28e-3, Ширина = 1.2e-3, Количество Поворотов = 4 Отображения свойства антенны. Просмотрите антенну, чтобы видеть изменение в структуре.
hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4) show(hx)
hx = helix with properties: Radius: 0.0280 Width: 0.0012 Turns: 4 Spacing: 0.0350 WindingDirection: 'CCW' FeedStubHeight: 1.0000e-03 GroundPlaneRadius: 0.0750 Tilt: 0 TiltAxis: [1 0 0] Load: [1x1 lumpedElement]
Используйте функцию pattern
, чтобы построить диаграмму направленности спиральной антенны. Диаграмма направленности антенны является пространственным распределением степени антенны. Шаблон отображает направленность или усиление антенны. По умолчанию, графики функций шаблона направленность антенны.
pattern(hx,1.8e9)
Используйте patternAzimuth
и функции patternElevation
, чтобы построить азимут и шаблон повышения спиральной антенны. Это - 2D диаграмма направленности антенны на заданной частоте.
patternAzimuth(hx,1.8e9) figure patternElevation(hx,1.8e9)
Используйте пару "имя-значение" Направленности в выводе функции шаблона, чтобы вычислить направленность спиральной антенны. Направленность является способностью антенны излучить степень в конкретном направлении. Это может быть задано как отношение максимальной интенсивности излучения в желаемом направлении к средней интенсивности излучения во всех других направлениях.
Directivity = pattern(hx,1.8e9,0,90)
Directivity = 10.0430
Используйте функцию EHfields
, чтобы вычислить поля EH спиральной антенны. Поля EH являются x, y, z компоненты электрических и магнитных полей антенны. Эти компоненты измеряются на определенной частоте и в заданных точках на пробеле.
[E,H] = EHfields(hx,1.8e9,[0;0;1])
E = -0.5241 - 0.5727i -0.8760 + 0.5252i -0.0036 + 0.0006i H = 0.0023 - 0.0014i -0.0014 - 0.0015i 0.0000 - 0.0000i
Используйте пару "имя-значение" Поляризации в функции шаблона, чтобы построить различные шаблоны поляризации спиральной антенны. Поляризация является ориентацией электрического поля или электронным полем, антенны. Поляризация классифицируется как эллиптическая, линейная, или круговая. Этот пример показывает диаграмму направленности Правой руки, циркулярной поляризованной (RHCP) спирали.
pattern(hx,1.8e9,'Polarization','RHCP')
Используйте функцию axialRatio
, чтобы вычислить коэффициент эллиптичности спиральной антенны. Коэффициент эллиптичности (AR) антенны в данном направлении определяет количество отношения двух ортогональных полевых компонентов, излученных в циркулярной поляризованной волне. Коэффициент эллиптичности бесконечности, подразумевает линейно поляризованную волну. Единица измерения является дБ.
ar = axialRatio(hx,1.8e9,20,30)
ar = 23.6238
Используйте функцию beamwidth
, чтобы вычислить ширину луча антенны. Ширина луча антенны является угловой мерой покрытия шаблона антенны. Угол ширины луча измеряется в плоскости, содержащей направление основного лепестка антенны.
[bw, angles] = beamwidth(hx,1.8e9,0,1:1:360)
bw = 57.0000 angles = 60 117
Используйте функцию impedance
, чтобы вычислить и построить входной импеданс спиральной антенны. Входной импеданс является отношением напряжения и текущий в порте. Импеданс антенны вычисляется как отношение напряжения фазовращателя (который составляет 1 В под углом фазы 0 градусов, как отмечалось ранее), и фазовращатель, текущий в порте.
impedance(hx,1.7e9:1e6:2.2e9)
Используйте функцию sparameters
, чтобы вычислить S11 спиральной антенны. Коэффициент отражения антенны или S_1_1, описывает относительную часть инцидентной ВЧ-мощности, которая отражается назад из-за несоответствия импеданса.
S = sparameters(hx,1.7e9:1e6:2.2e9,72) rfplot(S)
S = sparameters: S-parameters object NumPorts: 1 Frequencies: [501x1 double] Parameters: [1x1x501 double] Impedance: 72 rfparam(obj,i,j) returns S-parameter Sij
Используйте функцию returnLoss
, чтобы вычислить и построить потерю возврата спиральной антенны. Антенна возвращается, потеря является мерой эффективности подачи электроэнергии от линии передачи до загрузки, такой как антенна. Вычисления отображены в logscale.
returnLoss(hx,1.7e9:1e6:2.2e9,72)
Используйте функцию vswr
, чтобы вычислить и построить VSWR спиральной антенны. Антенна VSWR является другой мерой импеданса, соответствующего между линией передачи и антенной.
vswr(hx,1.7e9:1e6:2.2e9,72)
Используйте функцию charge
, чтобы вычислить распределение заряда спиральной антенны. Распределение заряда является значением заряда на поверхности антенны на заданной частоте. Используйте функцию current
, чтобы вычислить распределение тока спиральной антенны. Распределение тока является значением тока на поверхности антенны на заданной частоте.
charge(hx,2.01e9) figure current(hx,2.01e9)
Используйте функцию mesh
, чтобы создать и показать структуру mesh спиральной антенны. mesh используется, чтобы дискретизировать поверхность антенны. В этом процессе электромагнитный решатель может обработать геометрию и материал антенны. Форма основания или элемента дискретизации для подразделения поверхности антенны является треугольником.
mesh(hx)
Задайте максимальную длину ребра для треугольников с помощью пары "имя-значение" 'MaxEdgeLength'. Эта пара "имя-значение" поймала в сети спиральную структуру вручную.
mesh(hx,'MaxEdgeLength',0.01)
meshconfig(hx,'auto')
ans = struct with fields: NumTriangles: 890 NumTetrahedra: 0 NumBasis: [] MaxEdgeLength: 0.0100 MeshMode: 'auto'
Найдите ссылку на Антенну Около Полевого примера визуализации ниже: Почти полевая Визуализация Антенны
[1] Balanis, C.A. "Теория антенны. Анализ и проектирование", p. 514, Вайли, Нью-Йорк, 3-й Выпуск, 2005.