Дифференцирование поля-Jenkins по сравнению с оценкой ARIMA

Этот пример показывает, как оценить модель ARIMA с несезонным интегрированием с помощью estimate. Ряд не является differenced перед оценкой. Результаты сравниваются со стратегией моделирования Поля-Jenkins, где данные являются первым differenced, и затем смоделированный как стационарная модель ARMA (Поле и др., 1994).

Временные ряды являются журналом ежеквартальный австралийский Индекс потребительских цен (CPI), измеренный от 1 972 до 1991.

Загрузите данные

Загрузите и отобразите австралийские данные о CPI на графике.

load Data_JAustralian
y = DataTable.PAU;
T = length(y);

figure
plot(y);
h = gca;        % Define a handle for the current axes
h.XLim = [0,T]; % Set x-axis limits
h.XTickLabel = datestr(dates(1:10:T),17); % Label x-axis tick marks
title('Log Quarterly Australian CPI')

Ряд является неустановившимся с ясным восходящим трендом. Это предлагает дифференцирование данные перед использованием стационарной модели (как предложено методологией Поля-Jenkins), или подбор кривой неустановившейся модели ARIMA непосредственно.

Оцените модель ARIMA

Задайте модель ARIMA (2,1,0) и оценку.

Mdl = arima(2,1,0);
EstMdl = estimate(Mdl,y);
 
    ARIMA(2,1,0) Model (Gaussian Distribution):
 
                  Value       StandardError    TStatistic      PValue  
                __________    _____________    __________    __________

    Constant      0.010072      0.0032802        3.0707       0.0021356
    AR{1}          0.21206       0.095428        2.2222         0.02627
    AR{2}          0.33728        0.10378        3.2499       0.0011543
    Variance    9.2302e-05     1.1112e-05        8.3066      9.8491e-17

Предполагаемая модель

Δyt=0.01+0.21Δyt-1+0.34Δyt-2+εt,

где εt нормально распределено со стандартным отклонением 0.01.

Знаки предполагаемых коэффициентов AR соответствуют коэффициентам AR на правой стороне образцового уравнения. В обозначении полинома оператора задержки подобранная модель

(1-0.21L-0.34L2)(1-L)yt=εt,

с противоположным входят в систему коэффициенты AR.

Различие данные перед оценкой

Возьмите первое различие данных. Оцените модель AR (2) с помощью differenced данных.

dY = diff(y);
MdlAR = arima(2,0,0);
EstMdlAR = estimate(MdlAR,dY);
 
    ARIMA(2,0,0) Model (Gaussian Distribution):
 
                  Value       StandardError    TStatistic     PValue  
                __________    _____________    __________    _________

    Constant      0.010429      0.0038043        2.7414      0.0061183
    AR{1}          0.20119        0.10146        1.9829       0.047375
    AR{2}          0.32299        0.11803        2.7364      0.0062115
    Variance    9.4242e-05     1.1626e-05        8.1062      5.222e-16

Точечные оценки параметра очень похожи на тех в EstMdl. Стандартные погрешности, однако, больше, когда данные являются differenced перед оценкой.

Сделанное использование прогнозов предполагаемой модели AR (EstMdlAR) будет в шкале differenced. Сделанное использование прогнозов предполагаемой модели ARIMA (EstMdl) будет в той же шкале как исходные данные.

Ссылки:

Поле, G. E. P. Г. М. Дженкинс и Г. К. Рейнсель. Анализ timeseries: Прогнозирование и Управление. 3-й редактор Englewood Cliffs, NJ: Prentice Hall, 1994.

Смотрите также

Приложения

Объекты

Функции

Связанные примеры

Больше о

Для просмотра документации необходимо авторизоваться на сайте