Байесова модель линейной регрессии с сопряженным, предшествующим для вероятности данных
Байесов conjugateblm объекта модели линейной регрессии указывает, что объединенным предшествующим распределением коэффициентов регрессии и отклонения воздействия, то есть, (β, σ 2) является dependent, normal-inverse-gamma conjugate model. Условное предшествующее распределение β |σ2 многомерно Гауссов со средним μ и отклонением σ 2V. Предшествующее распределение σ 2 является обратной гаммой с формой A и шкала B.
Вероятность данных где ϕ (yt; xtβ, σ 2) является Гауссовой плотностью вероятности, оцененной в yt со средним xtβ и отклонением σ 2. Заданное уголовное прошлое сопряжено для вероятности, и получившиеся крайние и условные апостериорные распределения аналитически послушны. Для получения дополнительной информации на апостериорном распределении, смотрите Аналитически Послушное Последующее поколение.
В целом, когда вы создаете Байесов объект модели линейной регрессии, он задает объединенное предшествующее распределение и характеристики модели линейной регрессии только. Таким образом, объект модели является шаблоном, предназначенным для дальнейшего использования. А именно, чтобы включить данные в модель для анализа апостериорного распределения, передайте объект модели и данные к соответствующей объектной функции.
PriorMdl = conjugateblm(NumPredictors)PriorMdl = conjugateblm(NumPredictors,Name,Value) создает Байесов объект модели линейной регрессии (PriorMdl = conjugateblm(NumPredictors)PriorMdl), состоявший из предикторов NumPredictors и прерывания, и устанавливает свойство NumPredictors. Объединенное предшествующее распределение (β, σ 2) является зависимой нормальной обратной гаммой сопряженная модель. PriorMdl является шаблоном, который задает предшествующие дистрибутивы и размерность β.
Можно установить перезаписываемые значения свойств, когда вы создаете объект модели при помощи синтаксиса аргумента пары "имя-значение", или после того, как вы создаете объект модели при помощи записи через точку. Например, чтобы установить более рассеянную предшествующую ковариационную матрицу для PriorMdl, чем значение по умолчанию, Байесова модель линейной регрессии, содержащая три коэффициента модели, входят
PriorMdl.V = 100*eye(3);
NumPredictors — Количество переменных прогнозаКоличество переменных прогноза в Байесовом несколько модель линейной регрессии, заданная как неотрицательное целое число.
NumPredictors должен совпасть с количеством столбцов в ваших данных о предикторе, которые вы задаете во время образцовой оценки или симуляции.
При определении NumPredictors исключите любой термин прерывания для значения.
После создания модели, если вы изменяете значения NumPredictors с помощью записи через точку, затем эти параметры возвращаются к значениям по умолчанию:
Имена переменных (VarNames)
Предшествующее среднее значение β (Mu)
Предшествующая ковариационная матрица β (V)
Типы данных: double
Intercept — Отметьте для включения прерывания модели регрессииtrue (значение по умолчанию) | falseОтметьте для включения прерывания модели регрессии, заданного как значение в этой таблице.
| Значение | Описание |
|---|---|
false | Исключите прерывание из модели регрессии. Поэтому β является p - размерный вектор, где p является значением NumPredictors. |
true | Включайте прерывание в модель регрессии. Поэтому β (p + 1) - размерный вектор. Эта спецификация заставляет T-by-1 вектор из единиц предварительно ожидаться к данным о предикторе во время оценки и симуляции. |
Если вы включаете столбец из единиц в данных о предикторе для термина прерывания, то установленный Intercept к false.
Пример: 'Intercept',false
Типы данных: логический
Varnames Имена переменной прогнозаПеременная прогноза называет для отображений, заданных как вектор строки или вектор ячейки векторов символов. VarNames должен содержать элементы NumPredictors. является именем переменной в столбце VarNames(j)j набора данных предиктора, который вы задаете во время оценки, симуляции или прогнозирования.
Значением по умолчанию является , где {'Beta(1)','Beta(2),...,Beta(p)}p является значением NumPredictors.
Пример: 'VarNames',["UnemploymentRate"; "CPI"]
Типы данных: string | cell | char
\mu Средний гиперпараметр Гауссовых, предшествующих на βzeros(Intercept + NumPredictors,1) (значение по умолчанию) | числовой скаляр | числовой векторСредний параметр Гауссова предшествующего на β, заданном в виде числа или вектора.
Если Mu является вектором, то он должен иметь элементы NumPredictors + 1 или NumPredictors.
Для элементов NumPredictors conjugateblm устанавливает предшествующее среднее значение предикторов NumPredictors только. Предикторы соответствуют столбцам в данных о предикторе (заданный во время оценки, симуляции, или предсказывающий). conjugateblm игнорирует прерывание в модели, то есть, conjugateblm задает предшествующее среднее значение по умолчанию к любому прерыванию.
Для элементов NumPredictors + 1 первый элемент соответствует предшествующему среднему значению прерывания, и все другие элементы соответствуют предикторам.
Пример: 'Mu',[1; 0.08; 2]
Типы данных: double
V Условный гиперпараметр ковариационной матрицы Гауссовых, предшествующих на β10000*eye(Intercept + NumPredictors) (значение по умолчанию) | симметричная, положительно-определенная матрица | diag(Inf(Intercept + NumPredictors,1))Условная ковариационная матрица Гауссовых, предшествующих на β, заданном как c-by-c симметричная, положительная определенная матрица. c может быть NumPredictors или NumPredictors + 1.
Если c является NumPredictors, то conjugateblm устанавливает предшествующую ковариационную матрицу на
conjugateblm приписывает предшествующие ковариации по умолчанию прерыванию и приписывает V коэффициентам переменных прогноза в данных. Строки и столбцы V соответствуют столбцам (переменные) в данных о предикторе.
Если c является NumPredictors + 1, то conjugateblm устанавливает целую предшествующую ковариацию на V. Первая строка и столбец соответствует прерыванию. Все другие строки и столбцы соответствуют столбцам в данных о предикторе.
Значением по умолчанию является flat prior. Для adaptive prior задайте diag(Inf(Intercept + NumPredictors,1)). Адаптивное уголовное прошлое указывает на нулевую точность для предшествующего распределения, чтобы иметь как можно меньше влияния на апостериорное распределение.
V является предшествующей ковариацией β до фактора σ 2.
Пример: 'V',diag(Inf(3,1))
Типы данных: double
A Сформируйте гиперпараметр обратной гаммы, предшествующей на σ 23 (значение по умолчанию) | числовой скалярСформируйте гиперпараметр обратной гаммы, предшествующей на σ 2, заданный в виде числа.
A должен быть, по крайней мере, –(Intercept + NumPredictors)/2.
С B, сохраненным зафиксированным, обратное гамма распределение становится более высоким и более сконцентрированным, когда A увеличивается. Эта характеристика взвешивает предшествующую модель σ 2 в большей степени, чем вероятность во время следующей оценки.
Для функциональной формы обратного гамма распределения смотрите Аналитически Послушное Последующее поколение.
Пример: 'A',0.1
Типы данных: double
B Масштабируйте гиперпараметр обратной гаммы, предшествующей на σ 21 (значение по умолчанию) | положительная скалярная величина | InfМасштабный коэффициент обратной гаммы, предшествующей на σ 2, заданный как положительная скалярная величина или Inf.
С A, сохраненным зафиксированным, обратное гамма распределение становится более высоким и более сконцентрированным, когда B увеличивается. Эта характеристика взвешивает предшествующую модель σ 2 в большей степени, чем вероятность во время следующей оценки.
Пример: 'B',5
Типы данных: double
estimate | Подходящие параметры Байесовой модели линейной регрессии к данным |
simulate | Моделируйте коэффициенты регрессии и отклонение воздействия Байесовой модели линейной регрессии |
forecast | Предскажите ответы Байесовой модели линейной регрессии |
plot | Визуализируйте предшествующую и следующую плотность Байесовых параметров модели линейной регрессии |
summarize | Статистика сводных данных распределения стандартной Байесовой модели линейной регрессии |
Считайте несколько моделью линейной регрессии, которая предсказывает американский действительный валовой национальный продукт (GNPR) с помощью линейной комбинации индекса промышленного производства (IPI), общая занятость (E) и действительная заработная плата (WR).
\forall моменты времени, серия независимых Гауссовых воздействий со средним значением 0 и отклонение .
Примите, что предшествующие дистрибутивы:
. 4 1 вектор средних значений, и масштабированная положительная определенная ковариационная матрица 4 на 4.
. и форма и шкала, соответственно, обратного гамма распределения.
Эти предположения и вероятность данных подразумевают нормальную обратную гамму сопряженная модель.
Создайте сопряженную предшествующую модель нормальной обратной гаммы для параметров линейной регрессии. Задайте количество предикторов p.
p = 3; Mdl = bayeslm(p,'ModelType','conjugate')
Mdl =
conjugateblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
Mu: [4x1 double]
V: [4x4 double]
A: 3
B: 1
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Beta(1) | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Beta(2) | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Beta(3) | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Sigma2 | 0.5000 0.5000 [ 0.138, 1.616] 1.000 IG(3.00, 1)
Mdl является conjugateblm Байесов объект модели линейной регрессии, представляющий предшествующее распределение отклонения воздействия и коэффициентов регрессии. В командном окне bayeslm отображает сводные данные предшествующих дистрибутивов.
Можно установить перезаписываемые значения свойств созданных моделей с помощью записи через точку. Определите имена коэффициента регрессии к соответствующим именам переменных.
Mdl.VarNames = ["IPI" "E" "WR"]
Mdl =
conjugateblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
Mu: [4x1 double]
V: [4x4 double]
A: 3
B: 1
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
IPI | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
E | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
WR | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Sigma2 | 0.5000 0.5000 [ 0.138, 1.616] 1.000 IG(3.00, 1)
Полагайте, что модель линейной регрессии в Создает Нормальную Обратную Гамму Сопряженная Предшествующая Модель.
Создайте сопряженную предшествующую модель нормальной обратной гаммы для параметров линейной регрессии. Задайте количество предикторов p и имена коэффициентов регрессии.
p = 3; PriorMdl = bayeslm(p,'ModelType','conjugate','VarNames',["IPI" "E" "WR"]);
Загрузите набор данных Нельсона-Плоссера. Создайте переменные для ряда предиктора и ответа.
load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,'GNPR'};
Оцените крайние апостериорные распределения и .
PosteriorMdl = estimate(PriorMdl,X,y);
Method: Analytic posterior distributions
Number of observations: 62
Number of predictors: 4
Log marginal likelihood: -259.348
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | -24.2494 8.7821 [-41.514, -6.985] 0.003 t (-24.25, 8.65^2, 68)
IPI | 4.3913 0.1414 [ 4.113, 4.669] 1.000 t (4.39, 0.14^2, 68)
E | 0.0011 0.0003 [ 0.000, 0.002] 1.000 t (0.00, 0.00^2, 68)
WR | 2.4683 0.3490 [ 1.782, 3.154] 1.000 t (2.47, 0.34^2, 68)
Sigma2 | 44.1347 7.8020 [31.427, 61.855] 1.000 IG(34.00, 0.00069)
PosteriorMdl является объектом модели conjugateblm, хранящим объединенное крайнее апостериорное распределение и учитывая данные. estimate отображает сводные данные крайних апостериорных распределений к командному окну. Строки сводных данных соответствуют коэффициентам регрессии и отклонению воздействия и столбцам к характеристикам апостериорного распределения. Характеристики включают:
CI95, который содержит 95%-е Байесовы equitailed вероятные интервалы для параметров. Например, апостериорная вероятность, что коэффициент регрессии WR находится в [1.782, 3.154], 0.95.
Positive, который содержит апостериорную вероятность, что параметр больше, чем 0. Например, вероятность, что прерывание больше, чем 0, 0.003.
Distribution, который содержит описания апостериорных распределений параметров. Например, крайнее апостериорное распределение IPI является t со средним значением 4,39, стандартным отклонением 0,14, и 68 степеней свободы.
Доступ к свойствам апостериорного распределения с помощью записи через точку. Например, отобразите крайние следующие средние значения путем доступа к свойству Mu.
PosteriorMdl.Mu
ans = 4×1
-24.2494
4.3913
0.0011
2.4683
Полагайте, что модель линейной регрессии в Создает Нормальную Обратную Гамму Сопряженная Предшествующая Модель.
Создайте сопряженную предшествующую модель нормальной обратной гаммы для параметров линейной регрессии. Задайте количество предикторов p и имена коэффициентов регрессии.
p = 3; PriorMdl = bayeslm(p,'ModelType','conjugate','VarNames',["IPI" "E" "WR"])
PriorMdl =
conjugateblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
Mu: [4x1 double]
V: [4x4 double]
A: 3
B: 1
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
IPI | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
E | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
WR | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Sigma2 | 0.5000 0.5000 [ 0.138, 1.616] 1.000 IG(3.00, 1)
Загрузите набор данных Нельсона-Плоссера. Создайте переменные для ряда предиктора и ответа.
load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,'GNPR'};
Оцените условные апостериорные распределения учитывая данные и .
[Mdl,condPostMeanBeta,CondPostCovBeta] = estimate(PriorMdl,X,y,... 'Sigma2',2);
Method: Analytic posterior distributions
Conditional variable: Sigma2 fixed at 2
Number of observations: 62
Number of predictors: 4
| Mean Std CI95 Positive Distribution
--------------------------------------------------------------------------------
Intercept | -24.2494 1.8695 [-27.914, -20.585] 0.000 N (-24.25, 1.87^2)
IPI | 4.3913 0.0301 [ 4.332, 4.450] 1.000 N (4.39, 0.03^2)
E | 0.0011 0.0001 [ 0.001, 0.001] 1.000 N (0.00, 0.00^2)
WR | 2.4683 0.0743 [ 2.323, 2.614] 1.000 N (2.47, 0.07^2)
Sigma2 | 2 0 [ 2.000, 2.000] 1.000 Fixed value
Warning: Current syntax supports 6 output arguments, and will be removed in a future release. For supported output arguments, see <a href="matlab:helpview(fullfile(docroot,'econ','econ.map'),'blmestimate')">estimate</a>.
estimate возвращается 4 1 вектор средних значений и ковариационная матрица 4 на 4 условного апостериорного распределения в condPostMeanBeta и CondPostCovBeta, соответственно. Кроме того, estimate отображает сводные данные условного апостериорного распределения .
Предупреждение указывает, что в будущем релизе синтаксисы estimate изменятся. В это время не обновляйте свой код. Для получения дополнительной информации смотрите Заменяющий Нежелательные Синтаксисы оценки.
Отобразите Mdl.
Mdl
Mdl =
conjugateblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
Mu: [4x1 double]
V: [4x4 double]
A: 3
B: 1
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
IPI | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
E | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
WR | 0 70.7107 [-141.273, 141.273] 0.500 t (0.00, 57.74^2, 6)
Sigma2 | 0.5000 0.5000 [ 0.138, 1.616] 1.000 IG(3.00, 1)
Поскольку estimate вычисляет условное апостериорное распределение, он возвращает исходную предшествующую модель, не следующее, в первом положении списка выходных аргументов.
Считайте модель линейной регрессии в Оценке Крайними Апостериорными распределениями.
Создайте предшествующую модель для коэффициентов регрессии и отклонения воздействия, затем оцените крайние апостериорные распределения.
p = 3; PriorMdl = bayeslm(p,'ModelType','conjugate','VarNames',["IPI" "E" "WR"]); load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,'GNPR'}; PosteriorMdl = estimate(PriorMdl,X,y);
Method: Analytic posterior distributions
Number of observations: 62
Number of predictors: 4
Log marginal likelihood: -259.348
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------------
Intercept | -24.2494 8.7821 [-41.514, -6.985] 0.003 t (-24.25, 8.65^2, 68)
IPI | 4.3913 0.1414 [ 4.113, 4.669] 1.000 t (4.39, 0.14^2, 68)
E | 0.0011 0.0003 [ 0.000, 0.002] 1.000 t (0.00, 0.00^2, 68)
WR | 2.4683 0.3490 [ 1.782, 3.154] 1.000 t (2.47, 0.34^2, 68)
Sigma2 | 44.1347 7.8020 [31.427, 61.855] 1.000 IG(34.00, 0.00069)
Извлеките следующее среднее значение из следующей модели и следующей ковариации из сводных данных оценки, возвращенных summarize.
estBeta = PosteriorMdl.Mu;
Summary = summarize(PosteriorMdl);
estBetaCov = Summary.Covariances{1:(end - 1),1:(end - 1)};Предположим что, если коэффициент действительной заработной платы (WR) ниже 2.5, то политика выполнена. Несмотря на то, что апостериорное распределение WR известно, и таким образом, можно вычислить вероятности непосредственно, можно оценить вероятность с помощью симуляции Монте-Карло вместо этого.
Чертите выборки 1e6 от крайнего апостериорного распределения .
NumDraws = 1e6;
rng(1);
BetaSim = simulate(PosteriorMdl,'NumDraws',NumDraws);BetaSim является 4-by-матрицей 1e6, содержащей ничьи. Строки соответствуют коэффициенту регрессии и столбцам к последовательным ничьим.
Изолируйте ничьи, соответствующие коэффициенту WR, и затем идентифицируйте, какие ничьи - меньше чем 2,5.
isWR = PosteriorMdl.VarNames == "WR";
wrSim = BetaSim(isWR,:);
isWRLT2p5 = wrSim < 2.5;Найдите крайнюю апостериорную вероятность, что коэффициент регрессии WR ниже 2.5 путем вычисления пропорции ничьих, которые являются меньше чем 2,5.
probWRLT2p5 = mean(isWRLT2p5)
probWRLT2p5 = 0.5362
Апостериорная вероятность, что коэффициент действительной заработной платы - меньше чем 2,5, о 0.54.
Крайнее апостериорное распределение коэффициента WR является a , но сосредоточенный в 2,47 и масштабируемый 0,34. Непосредственно вычислите апостериорную вероятность, что коэффициент WR - меньше чем 2,5.
center = estBeta(isWR); stdBeta = sqrt(diag(estBetaCov)); scale = stdBeta(isWR); t = (2.5 - center)/scale; dof = 68; directProb = tcdf(t,dof)
directProb = 0.5361
Апостериорные вероятности почти идентичны.
Copyright 2018 The MathWorks, Inc.
Считайте модель линейной регрессии в Оценке Крайними Апостериорными распределениями.
Создайте предшествующую модель для коэффициентов регрессии и отклонения воздействия, затем оцените крайние апостериорные распределения. Протяните последние 10 периодов данных из оценки, таким образом, можно использовать их, чтобы предсказать действительный GNP. Выключите отображение оценки.
p = 3; PriorMdl = bayeslm(p,'ModelType','conjugate','VarNames',["IPI" "E" "WR"]); load Data_NelsonPlosser fhs = 10; % Forecast horizon size X = DataTable{1:(end - fhs),PriorMdl.VarNames(2:end)}; y = DataTable{1:(end - fhs),'GNPR'}; XF = DataTable{(end - fhs + 1):end,PriorMdl.VarNames(2:end)}; % Future predictor data yFT = DataTable{(end - fhs + 1):end,'GNPR'}; % True future responses PosteriorMdl = estimate(PriorMdl,X,y,'Display',false);
Предскажите ответы с помощью следующего прогнозирующего распределения и с помощью будущих данных о предикторе XF. Постройте истинные значения ответа и предсказанных значений.
yF = forecast(PosteriorMdl,XF); figure; plot(dates,DataTable.GNPR); hold on plot(dates((end - fhs + 1):end),yF) h = gca; hp = patch([dates(end - fhs + 1) dates(end) dates(end) dates(end - fhs + 1)],... h.YLim([1,1,2,2]),[0.8 0.8 0.8]); uistack(hp,'bottom'); legend('Forecast Horizon','True GNPR','Forecasted GNPR','Location','NW') title('Real Gross National Product'); ylabel('rGNP'); xlabel('Year'); hold off

yF является вектором 10 на 1 будущих значений действительного GNP, соответствующего будущим данным о предикторе.
Оцените среднеквадратическую ошибку (RMSE) прогноза.
frmse = sqrt(mean((yF - yFT).^2))
frmse = 25.5397
Прогноз RMSE является относительной мерой точности прогноза. А именно, вы оцениваете несколько моделей с помощью различных предположений. Модель с самым низким прогнозом RMSE является лучше всего выполняющей моделью тех сравниваемых.
Copyright 2018 The MathWorks, Inc.
Bayesian linear regression model обрабатывает параметры β и σ 2 в модели yt нескольких линейных регрессий (MLR) = xt β + εt как случайные переменные.
В течение многих времен t = 1..., T:
yt является наблюдаемым ответом.
xt является 1 на (p + 1) вектор - строка из наблюдаемых величин предикторов p. Размещать образцовое прерывание, x 1t = 1 для всего t.
β (p + 1)-by-1 вектор-столбец коэффициентов регрессии, соответствующих переменным, которые составляют столбцы xt.
εt является случайным воздействием со средним значением нуля и Cov (ε) = σ 2IT×T, в то время как ε является T-by-1 вектор, содержащий все воздействия. Эти предположения подразумевают, что вероятность данных
ϕ (yt; xtβ, σ 2) является Гауссовой плотностью вероятности со средним xtβ и отклонением σ 2 оцененных в yt;.
Прежде, чем рассмотреть данные, вы налагаете предположение joint prior distribution на (β, σ 2). В Байесовом анализе вы обновляете распределение параметров при помощи информации о параметрах, полученных из вероятности данных. Результатом является joint posterior distribution (β, σ 2) или conditional posterior distributions параметров.
Можно сбросить все образцовые свойства с помощью записи через точку, например, PriorMdl.V = diag(Inf(3,1)). Для сброса свойства conjugateblm делает минимальную проверку ошибок значений. Минимизация проверки ошибок имеет преимущество сокращения накладных расходов на симуляции Монте-Карло Цепи Маркова, который приводит к эффективному осуществлению алгоритма.
Функция bayeslm может создать любой поддерживаемый предшествующий объект модели для Байесовой линейной регрессии.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.