Оценка наибольшего правдоподобия для условных моделей отклонения

Инновационное распределение

Для условных моделей отклонения инновационный процесс εt=σtzt, где zt следует за распределением t стандартизированного Гауссова или Студента с ν>2 степени свободы. Задайте свой выбор распределения в образцовом свойстве Distribution.

Инновационное отклонение, σt2, может следовать за GARCH, EGARCH или условным процессом отклонения GJR.

Если модель включает средний срок смещения, то

εt=ytμ.

Функция estimate для garch, egarch и моделей gjr оценивает параметры с помощью оценки наибольшего правдоподобия. estimate возвращает адаптированные значения для любых параметров во входной модели, равной NaN. estimate соблюдает любые ограничения равенства во входной модели и не возвращает оценки для параметров с ограничениями равенства.

Функции Loglikelihood

Учитывая историю процесса, инновации условно независимы. Позвольте Ht обозначить историю процесса, доступного во время t, t = 1..., N. Функцией правдоподобия для инновационного ряда дают

f(ε1,ε2,,εN|HN1)=t=1Nf(εt|Ht1),

где f является стандартизированным Гауссовым или функцией плотности t.

Точная форма loglikelihood целевой функции зависит от параметрической формы инновационного распределения.

  • Если zt имеет стандартное Распределение Гаусса, то функция loglikelihood

    LLF=N2журнал(2π)12t=1Nжурналσt212t=1Nεt2σt2.

  • Если zt имеет распределение t стандартизированного Студента с ν>2 степени свободы, затем функция loglikelihood

    LLF=Nжурнал[Γ(ν+12)π(ν2)Γ(ν2)]12t=1Nжурналσt2ν+12t=1Nжурнал[1+εt2σt2(ν2)].

estimate выполняет оценку ковариационной матрицы для оценок наибольшего правдоподобия с помощью векторного произведения градиентов (OPG) метод.

Ссылки

[1] Боллерслев, T. “Обобщенный Авторегрессивный Условный Heteroskedasticity”. Журнал Эконометрики. Издание 31, 1986, стр 307–327.

[2] Боллерслев, T. “Условно Модель Временных рядов Heteroskedastic за Спекулятивные Цены и Нормы прибыли”. Анализ Экономики и Статистики. Издание 69, 1987, стр 542–547.

[3] Энгл, R. F. “Авторегрессивный Условный Heteroskedasticity с Оценками Отклонения Инфляции Соединенного Королевства”. Econometrica. Издание 50, 1982, стр 987–1007.

Glosten, L. R. Р. Джейгэннэзэн и Д. Э. Ранкл. “На Отношении между Ожидаемым значением и Энергозависимостью Номинального Избыточного Возврата на Запасах”. Журнал Финансов. Издание 48, № 5, 1993, стр 1779–1801.

[4] Гамильтон, J. D. Анализ timeseries. Принстон, NJ: Издательство Принстонского университета, 1994.

Смотрите также

Объекты

Функции

Связанные примеры

Больше о