GARCH по умолчанию (P, Q) модель в Econometrics Toolbox™ имеет форму
с Гауссовым инновационным распределением и
Модель по умолчанию имеет значительное смещение и изолированные отклонения и придает инновациям квадратную форму, в последовательных задержках.
Можно задать модель этой формы с помощью краткого синтаксиса garch(P,Q)
. Для входных параметров P
и Q
, введите номер изолированных условных отклонений (условия GARCH), P, и изолировал инновации в квадрате (условия ДУГИ), Q, соответственно. Следующие ограничения применяются:
P и Q должны быть неотрицательными целыми числами.
Если P является нулем, GARCH (P, Q), модель уменьшает до модели ARCH (Q).
Если P> 0, то необходимо также задать Q> 0.
Когда вы используете этот краткий синтаксис, garch
создает модель garch
с этими значениями свойств по умолчанию.
Свойство | Значение по умолчанию |
---|---|
P | Количество условий GARCH, P |
Q | Количество условий ДУГИ, Q |
Offset | 0 |
Constant | NaN |
GARCH | Вектор ячейки NaN s |
ARCH | Вектор ячейки NaN s |
Distribution | "Gaussian" |
Чтобы присвоить значения не по умолчанию любым свойствам, можно изменить созданную модель с помощью записи через точку.
Чтобы проиллюстрировать, рассмотрите определение модели GARCH(1,1)
с Гауссовым инновационным распределением и
Mdl = garch(1,1)
Mdl = garch with properties: Description: "GARCH(1,1) Conditional Variance Model (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 1 Q: 1 Constant: NaN GARCH: {NaN} at lag [1] ARCH: {NaN} at lag [1] Offset: 0
Созданная модель, Mdl
, имеет NaN
s для всех параметров модели. Значение NaN
сигнализирует, что параметр должен быть оценен или в противном случае задан пользователем. Все параметры должны быть заданы, чтобы предсказать или моделировать модель.
Чтобы оценить параметры, введите модель (наряду с данными) к estimate
. Это возвращает новую подходящую модель garch
. Подобранная модель имеет оценки параметра для каждого значения входа NaN
.
Вызов garch
без любых входных параметров возвращает спецификацию модели GARCH(0,0) со значениями свойств по умолчанию:
DefaultMdl = garch
DefaultMdl = garch with properties: Description: "GARCH(0,0) Conditional Variance Model (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 0 Q: 0 Constant: NaN GARCH: {} ARCH: {} Offset: 0
Этот пример показывает, как использовать краткий синтаксис garch(P,Q)
, чтобы задать GARCH по умолчанию (P, Q) модель, с Гауссовым инновационным распределением и
По умолчанию все параметры в созданной модели имеют неизвестные значения.
Задайте модель GARCH(1,1) по умолчанию.
Mdl = garch(1,1)
Mdl = garch with properties: Description: "GARCH(1,1) Conditional Variance Model (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 1 Q: 1 Constant: NaN GARCH: {NaN} at lag [1] ARCH: {NaN} at lag [1] Offset: 0
Вывод показывает, что созданная модель, Mdl
, имеет значения NaN
для всех параметров модели: постоянный термин, коэффициент GARCH и коэффициент ДУГИ. Можно изменить созданную модель с помощью записи через точку или ввести его (наряду с данными) к estimate
.
Самый гибкий способ задать модели GARCH использует аргументы пары "имя-значение". Вам не нужно, и при этом вы не в состоянии, чтобы задать значение для каждого образцового свойства. garch
присваивает значения по умолчанию любым свойствам, которые вы не делаете (или не может) задавать.
Общий GARCH (P, Q) модель имеет форму
где и
Инновационным распределением может быть t Гауссова или Студента. Распределение по умолчанию является Гауссовым.
В порядке оценить, предскажите или моделируйте модель, необходимо задать параметрическую форму модели (например, какие задержки соответствуют ненулевым коэффициентам, инновационному распределению), и любые известные значения параметров. Можно установить любые неизвестные параметры, равные NaN
, и затем вводить модель к estimate
(наряду с данными), чтобы получить оцененные значения параметров.
garch
(и estimate
) возвращает модель, соответствующую образцовой спецификации. Можно изменить модели, чтобы изменить или обновить спецификацию. Введите модели (без значений NaN
) к forecast
или simulate
для прогнозирования и симуляции, соответственно. Вот некоторые спецификации в качестве примера с помощью аргументов значения имени.
Модель | Спецификация |
---|---|
| garch('GARCH',NaN,'ARCH',NaN) или garch(1,1) |
| garch ('Смещение', NaN, 'GARCH', NaN, 'ДУГА', NaN... |
| garch ('Констант', 0.1, 'GARCH', 0.6, 'ДУГА', 0.3... |
Вот полное описание аргументов значения имени, которые можно использовать, чтобы задать модели GARCH.
Вы не можете присвоить значения свойствам P
и Q
. garch
устанавливает эти свойства, равные самому большому GARCH и задержкам ДУГИ, соответственно.
Аргументы значения имени для моделей GARCH
Имя | Соответствующий образцовый термин (термины) GARCH | Когда задать |
---|---|---|
Offset | Среднее смещение, μ | Включать ненулевое среднее смещение. Например, По умолчанию |
Constant | Постоянный в условной модели отклонения, κ | Установить ограничения равенства для κ. Например, если модель знала постоянные 0.1, задайте По умолчанию |
GARCH | Коэффициенты GARCH, | Установить ограничения равенства для коэффициентов GARCH. Например, чтобы задать коэффициент GARCH в модели задайте Только необходимо указать ненулевые элементы Любые коэффициенты, которые вы задаете, должны удовлетворить всю стационарность и ограничения положительности. |
GARCHLags | Задержки, соответствующие ненулевым коэффициентам GARCH |
Используйте этот аргумент в качестве ярлыка для определения задайте Используйте |
ARCH | Коэффициенты ДУГИ, | Установить ограничения равенства для коэффициентов ДУГИ. Например, чтобы задать коэффициент ДУГИ в модели задайте Только необходимо указать ненулевые элементы Любые коэффициенты, которые вы задаете, должны удовлетворить всю стационарность и ограничения положительности. |
ARCHLags | Задержки, соответствующие ненулевым коэффициентам ДУГИ |
Используйте этот аргумент в качестве ярлыка для определения задайте Используйте |
Distribution | Распределение инновационного процесса | Используйте этот аргумент, чтобы задать инновационное распределение t Студента. По умолчанию инновационное распределение является Гауссовым. Например, чтобы задать распределение t с неизвестными степенями свободы, задайте Чтобы задать инновационное распределение t с известными степенями свободы, присвойте |
Можно задать структуру задержки и инновационное распределение моделей GARCH с помощью приложения Econometric Modeler. Приложение обрабатывает все коэффициенты как неизвестные и допускающие оценку, включая параметр степеней свободы для инновационного распределения t.
В командной строке откройте приложение Econometric Modeler.
econometricModeler
Также откройте приложение из галереи приложений (см. Econometric Modeler).
В приложении вы видите все поддерживаемые модели путем выбора переменной временных рядов для ответа в Data Browser. Затем на вкладке Econometric Modeler, в разделе Models, кликают по стрелке, чтобы отобразить галерею моделей.
Раздел GARCH Models содержит все поддерживаемые условные модели отклонения. Чтобы задать модель GARCH, нажмите GARCH
. Диалоговое окно GARCH Model Parameters появляется.
Корректируемые параметры включают:
GARCH Degree – Порядок полинома GARCH
ARCH Degree – Порядок полинома ДУГИ
Include Offset – Включение образцового смещения
Innovation Distribution – Инновационное распределение
Когда вы настраиваете значения параметров, уравнение в разделе Model Equation изменяется, чтобы совпадать с вашими спецификациями. Корректируемые параметры соответствуют входному и аргументам пары "имя-значение", описанным в предыдущих разделах и на странице с описанием garch
.
Для получения дополнительной информации при определении моделей с помощью приложения, см. Подходящие Модели к Данным и Задающий Полиномы Оператора Задержки В интерактивном режиме.
Этот пример показывает, как задать GARCH (P, Q) модель со средним смещением. Используйте аргументы пары "имя-значение", чтобы задать модель, которая отличается от модели по умолчанию.
Задайте модель GARCH(1,1) со средним смещением,
где и
Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1)
Mdl = garch with properties: Description: "GARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 1 Q: 1 Constant: NaN GARCH: {NaN} at lag [1] ARCH: {NaN} at lag [1] Offset: NaN
Среднее смещение, кажется, в выводе как дополнительный параметр оценено или в противном случае задано.
Этот пример показывает, как задать модель GARCH с известными значениями параметров. Можно использовать такую полностью заданную модель в качестве входа к simulate
или forecast
.
Задайте модель GARCH(1,1)
с Гауссовым инновационным распределением.
Mdl = garch('Constant',0.1,'GARCH',0.7,'ARCH',0.2)
Mdl = garch with properties: Description: "GARCH(1,1) Conditional Variance Model (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 1 Q: 1 Constant: 0.1 GARCH: {0.7} at lag [1] ARCH: {0.2} at lag [1] Offset: 0
Поскольку все значения параметров заданы, созданная модель не имеет никаких значений NaN
. Функции simulate
и forecast
не принимают входные модели со значениями NaN
.
Этот пример показывает, как задать модель GARCH с t инновационным распределением Студента.
Задайте модель GARCH(1,1) со средним смещением,
где и
Принять следует за t инновационным распределением Студента с восемью степенями свободы.
tdist = struct('Name','t','DoF',8); Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1,... 'Distribution',tdist)
Mdl = garch with properties: Description: "GARCH(1,1) Conditional Variance Model with Offset (t Distribution)" Distribution: Name = "t", DoF = 8 P: 1 Q: 1 Constant: NaN GARCH: {NaN} at lag [1] ARCH: {NaN} at lag [1] Offset: NaN
Значение Distribution
является массивом struct
с полем Name
, равным 't'
и полю DoF
, равному 8
. Когда вы задаете степени свободы, они не оцениваются, если вы вводите модель к estimate
.
Этот пример показывает, как задать модель GARCH с ненулевыми коэффициентами в непоследовательных задержках.
Задайте модель GARCH(3,1) с ненулевыми коэффициентами GARCH в задержках 1 и 3. Включайте среднее смещение.
Mdl = garch('Offset',NaN,'GARCHLags',[1,3],'ARCHLags',1)
Mdl = garch with properties: Description: "GARCH(3,1) Conditional Variance Model with Offset (Gaussian Distribution)" Distribution: Name = "Gaussian" P: 3 Q: 1 Constant: NaN GARCH: {NaN NaN} at lags [1 3] ARCH: {NaN} at lag [1] Offset: NaN
Неизвестные ненулевые коэффициенты GARCH соответствуют изолированным отклонениям в задержках 1 и 3. Вывод показывает только ненулевые коэффициенты.
Отобразите значение GARCH
.
Mdl.GARCH
ans = 1x3 cell array
{[NaN]} {[0]} {[NaN]}
Массив ячеек GARCH
возвращает три элемента. Первые и третьи элементы имеют значение NaN
, указывая, что эти коэффициенты являются ненулевыми и должны быть оценены или в противном случае заданы. По умолчанию garch
устанавливает временный коэффициент в задержке 2 равных нулю поддерживать непротиворечивость с индексацией массива ячеек MATLAB®.