fitFunction

Подобранная на заказ кривая процентной ставки возражает против данных о рынке облигаций

Синтаксис

CurveObj = IRFunctionCurve.fitFunction(Type,Settle,FunctionHandle,Instruments,IRFitOptionsObj)
CurveObj = IRFunctionCurve.fitFunction(Type,Settle,FunctionHandle,Instruments,IRFitOptionsObj,Name,Value)

Аргументы

Type

Тип процентной ставки изгибается для связи: zero, forward или discount.

Settle

Скаляр для даты Settle кривой.

FunctionHandle

Указатель на функцию, который задает кривую процентной ставки. Указатель на функцию берет два числовых вектора (время к зрелости и вектор функциональных коэффициентов) и возвращает один числовой выходной параметр (процентная ставка или коэффициент дисконтирования). Для получения дополнительной информации об определении указателя на функцию см. документацию MATLAB® Programming Fundamentals.

Instruments

N-by-4 матрица данных для Instruments, где первый столбец является датой Settle, второй столбец, является Maturity, третий столбец является чистой ценой, и четвертым столбцом является CouponRate для связи.

IRFitOptionsObj

Объект создается из IRFitOptions.

Compounding

(Необязательно) Скаляр, который устанавливает частоту соединения в год для объекта IRFunctionCurve:

  • −1 = Непрерывное соединение

  • 1 = Ежегодное соединение

  • 2 = Полугодовое соединение (значение по умолчанию)

  • 3 = Соединение три раза в год

  • 4 = Ежеквартально соединение

  • 6 = Два раза в месяц соединение

  • 12 = Ежемесячно соединение

Basis

(Необязательно) основание Дневного количества связи. Скаляр целых чисел.

  •  0 = фактический/фактический (значение по умолчанию)

  •  1 = 30/360 (СИА)

  •  2 = Фактический/360

  •  3 = Фактический/365

  •  4 = 30/360 (BMA)

  •  5 = 30/360 (ISDA)

  •  6 = 30/360 (европеец)

  •  7 = Фактический/365 (японский язык)

  •  8 = фактический/фактический (ICMA)

  •  9 = Фактический/360 (ICMA)

  •  10 = Фактический/365 (ICMA)

  •  11 = 30/360E (ICMA)

  •  12 = Фактический/365 (ISDA)

  •  13 = ШИНА/252

Для получения дополнительной информации смотрите основание.

Инструментальные параметры

Для каждой связи Instrument можно задать следующие дополнительные инструментальные параметры как пары параметра/значения. Например, InstrumentBasis отличает инструмент связи значение Basis от значения Basis кривой.

InstrumentPeriod

(Необязательно) Купоны в год связи. Вектор целых чисел. Позволенными значениями является 0, 1, 2 (значение по умолчанию), 3, 4, 6 и 12.

InstrumentBasis

(Необязательно) основание Дневного количества связи. Вектор целых чисел.

  •  0 = фактический/фактический (значение по умолчанию)

  •  1 = 30/360 (СИА)

  •  2 = Фактический/360

  •  3 = Фактический/365

  •  4 = 30/360 (BMA)

  •  5 = 30/360 (ISDA)

  •  6 = 30/360 (европеец)

  •  7 = Фактический/365 (японский язык)

  •  8 = фактический/фактический (ICMA)

  •  9 = Фактический/360 (ICMA)

  •  10 = Фактический/365 (ICMA)

  •  11 = 30/360E (ICMA)

  •  12 = Фактический/365 (ISDA)

  •  13 = ШИНА/252

Для получения дополнительной информации смотрите основание.

InstrumentEndMonthRule

(Необязательно) правило Конца месяца. Вектор. Это правило применяется только, когда Maturity является датой конца месяца в течение месяца, имея 30 или меньше дней. 0 = игнорирует правило, означая, что дата купонного платежа связи всегда является тем же числовым днем месяца. 1 = правило set о (значении по умолчанию), означая, что дата купонного платежа связи всегда является прошлым фактическим днем месяца.

InstrumentIssueDate

(Необязательно) Дата, когда инструмент был выпущен.

InstrumentFirstCouponDate

(Необязательно) Дата, когда связь делает свой первый купонный платеж; используемый, когда связь имеет неправильный первый период купона. Когда FirstCouponDate и LastCouponDate оба заданы, FirstCouponDate более приоритетен в определении структуры купонного платежа. Если вы не задаете FirstCouponDate, платежные дни потока наличности определяются от других входных параметров.

InstrumentLastCouponDate

(Необязательно) Последняя дата купона связи перед датой погашения; используемый, когда связь имеет неправильный последний период купона. В отсутствие заданного FirstCouponDate заданный LastCouponDate определяет структуру купона связи. Структура купона связи является усеченной в LastCouponDate, независимо от того, где это падает и сопровождается только датой потока наличности зрелости связи. Если вы не задаете LastCouponDate, платежные дни потока наличности определяются от других входных параметров.

InstrumentFace

(Необязательно) Поверхность или номинальная стоимость. Значение по умолчанию = 100.

Примечание

При использовании пар "имя-значение" Instrument можно задать простой процент для связи путем определения значения InstrumentPeriod как 0. Если InstrumentBasis и InstrumentPeriod не заданы для связи, следующие значения по умолчанию используются: Basis является 0 (действие/действие), и Period является 2.

Описание

CurveObj = IRFunctionCurve.fitFunction(Type, Settle, FunctionHandle, Instruments, IRFitOptionsObj,Name,Value) соответствует связи к подбирающей на заказ функции. Необходимо ввести дополнительные аргументы для Basis и Compounding как пары, разделенные запятой Name, аргументов Value. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Примеры

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];
CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');
OptOptions = optimoptions('lsqnonlin','display','iter');
functionHandle = @(t,theta) polyval(theta,t);    

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle,Instruments, ...
IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions));
                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality   CG-iterations
     0          4         38036.7                      4.92e+04
     1          8         38036.7             10       4.92e+04            0
     2         12         38036.7            2.5       4.92e+04            0
     3         16         38036.7          0.625       4.92e+04            0
     4         20         38036.7        0.15625       4.92e+04            0
     5         24         30741.5      0.0390625       1.72e+05            0
     6         28         30741.5       0.078125       1.72e+05            0
     7         32         30741.5      0.0195312       1.72e+05            0
     8         36         28713.6     0.00488281       2.33e+05            0
     9         40         20323.3     0.00976562       9.47e+05            0
    10         44         20323.3      0.0195312       9.47e+05            0
    11         48         20323.3     0.00488281       9.47e+05            0
    12         52         20323.3      0.0012207       9.47e+05            0
    13         56         19698.8    0.000305176       1.08e+06            0
    14         60           17493    0.000610352          7e+06            0
    15         64           17493      0.0012207          7e+06            0
    16         68           17493    0.000305176          7e+06            0
    17         72         15455.1    7.62939e-05       2.25e+07            0
    18         76         15455.1    0.000177499       2.25e+07            0
    19         80         13317.1     3.8147e-05       3.18e+07            0
    20         84         12865.3    7.62939e-05       7.83e+07            0
    21         88         11779.8    7.62939e-05       7.58e+06            0
    22         92         11747.6    0.000152588       1.45e+05            0
    23         96         11720.9    0.000305176       2.33e+05            0
    24        100         11667.2    0.000610352       1.48e+05            0
    25        104         11558.6      0.0012207       3.55e+05            0
    26        108         11335.5     0.00244141       1.57e+05            0
    27        112         10863.8     0.00488281       6.36e+05            0
    28        116         9797.14     0.00976562       2.53e+05            0
    29        120         6882.83      0.0195312       9.18e+05            0
    30        124         6882.83      0.0373993       9.18e+05            0
    31        128         3218.45     0.00934981       1.96e+06            0
    32        132         612.703      0.0186996       3.01e+06            0
    33        136         13.0998      0.0253882       3.05e+06            0
    34        140       0.0762922     0.00154002       5.05e+04            0
    35        144       0.0731652    3.61102e-06           29.9            0
    36        148       0.0731652    6.32335e-08          0.063            0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

Представленный в R2008b

Для просмотра документации необходимо авторизоваться на сайте