normplot

График нормального распределения

Синтаксис

normplot(x)
normplot(ax,x)
h = normplot(___)

Описание

пример

normplot(x) создает график нормального распределения, сравнивающий распределение данных в x к нормальному распределению.

normplot строит каждую точку данных в x с помощью знака "плюс" ('+') маркеры и проводит две ссылочных линии, которые представляют теоретическое распределение. Твердая ссылочная строка соединяет первые и третьи квартили данных, и пунктирная ссылочная строка расширяет сплошную линию к концам данных. Если выборочные данные имеют нормальное распределение, то точки данных появляются вдоль ссылочной строки. Распределение кроме нормального вводит искривление в графике данных.

normplot(ax,x) добавляет график нормального распределения в оси, заданные ax.

пример

h = normplot(___) возвращает графические указатели, соответствующие построенным графикам, с помощью любого из предыдущих синтаксисов.

Примеры

свернуть все

Сгенерируйте данные о случайной выборке из нормального распределения с mu = 10 и sigma = 1.

rng default;  % For reproducibility
x = normrnd(10,1,25,1);

Создайте график нормального распределения выборочных данных.

figure;
normplot(x)

График показывает, что данные следуют за нормальным распределением.

Сгенерируйте 50 случайных чисел от каждого из четырех различных дистрибутивов: стандартное нормальное распределение; распределение Студента-t с пятью степенями свободы (распределение "с толстым хвостом"); набор случайных чисел Пирсона с mu равняется 0, sigma, равный 1, скошенность, равная 0,5, и эксцесс, равный 3 ("скошенное правом" распределение); и набор случайных чисел Пирсона с mu равняется 0, sigma, равный 1, скошенность, равная-0.5, и эксцесс, равный 3 ("лево-скошенное" распределение).

rng(11)  % For reproducibility
x1 = normrnd(0,1,[50,1]);
x2 = trnd(5,[50,1]);
x3 = pearsrnd(0,1,0.5,3,[50,1]);
x4 = pearsrnd(0,1,-0.5,3,[50,1]);

Постройте четыре гистограммы на той же фигуре для визуального сравнения PDF каждого распределения.

figure
subplot(2,2,1)
histogram(x1,10)
title('Normal')
axis([-4,4,0,15])

subplot(2,2,2)
histogram(x2,10)
title('Fat Tails')
axis([-4,4,0,15])

subplot(2,2,3)
histogram(x3,10)
title('Right-Skewed')
axis([-4,4,0,15])

subplot(2,2,4)
histogram(x4,10)
title('Left-Skewed')
axis([-4,4,0,15])

Гистограммы показывают, как каждая выборка отличается от нормального распределения.

Создайте график нормального распределения для каждой выборки.

figure
subplot(2,2,1)
normplot(x1)
title('Normal')

subplot(2,2,2)
normplot(x2)
title('Fat Tails')

subplot(2,2,3)
normplot(x3)
title('Right-Skewed')

subplot(2,2,4)
normplot(x4)
title('Left-Skewed')

Создайте 50 2 матрица, содержащая 50 случайных чисел от каждого из двух различных дистрибутивов: стандартное нормальное распределение в столбце 1 и набор случайных чисел Пирсона с mu равняются 0, sigma, равный 1, скошенность, равная 0,5, и эксцесс, равный 3 ("скошенное правом" распределение) в столбце 2.

rng default  % For reproducibility
x = [normrnd(0,1,[50,1]) pearsrnd(0,1,0.5,3,[50,1])];

Создайте график нормального распределения для обеих выборок на той же фигуре. Возвратите сюжетную линию графические указатели.

figure
h = normplot(x)
h = 
  6x1 Line array:

  Line
  Line
  Line
  Line
  Line
  Line

legend({'Normal','Right-Skewed'},'Location','southeast')

Указатели h (1) и h (2) соответствуют точкам данных для нормальных и скошенных дистрибутивов, соответственно. Указатели h (3) и h (4) соответствуют второй и третьей подгонке строки квартиля к выборочным данным. Указатели h (5) и h (6) соответствуют экстраполируемой строке, которая расширяет к минимуму и максимуму каждого набора выборочных данных.

Чтобы проиллюстрировать, увеличьте ширину линии второй и третьей строки квартиля для нормально распределенной выборки данных (представленный h (3)) к 2.

h(3).LineWidth = 2;
h(4).LineWidth = 2;

Входные параметры

свернуть все

Выборочные данные, заданные как числовая векторная или числовая матрица. normplot отображает каждое значение в x с помощью символа '+'. Если x является матрицей, то normplot отображает отдельную строку для каждого столбца x.

Типы данных: single | double

Целевые оси, заданные как объект Axes или объект UIAxes. normplot добавляет дополнительный график в оси, заданные ax. Для получения дополнительной информации смотрите Axes Properties and UIAxes Properties.

Используйте gca, чтобы возвратить текущую систему координат для текущей фигуры.

Выходные аргументы

свернуть все

Графические указатели для объектов линии, возвращенных как вектор указателей графики Line. Графические указатели являются уникальными идентификаторами, которые можно использовать, чтобы запросить и изменить свойства определенной строки на графике. Для каждого столбца x normplot возвращает три указателя:

  • Строка, представляющая точки данных. normplot представляет каждую точку данных в x с помощью знака "плюс" ('+') маркеры.

  • Строка, соединяющая первые и третьи квартили каждого столбца x, представленного как сплошная линия.

  • Экстраполяция строки квартиля, расширенной к минимальным и максимальным значениям x, представленного как пунктирная линия.

Чтобы просмотреть и установить свойства объектов линии, используйте запись через точку. Для получения информации об использовании записи через точку см. Доступ к значениям свойств (MATLAB). Для получения информации о свойствах Line, которые можно установить, смотрите Line Properties.

Алгоритмы

normplot совпадает с квантилями выборочных данных к квантилям нормального распределения. Выборочные данные отсортированы и построены на оси X. Ось Y представляет квантили нормального распределения, преобразованного в значения вероятности. Поэтому масштабирование оси Y не линейно.

Где значением оси X является i th отсортированное значение от выборки размера N, значение оси Y является средней точкой между точками оценки эмпирической кумулятивной функции распределения данных. Средняя точка равна (i0.5)N.

normplot накладывает ссылочную строку, чтобы оценить линейность графика. Строка проходит первые и третьи квартили данных.

Альтернативная функциональность

Можно использовать функцию probplot, чтобы создать график вероятности. Функция probplot позволяет вам указать на подвергнутые цензуре данные и задать распределение для графика вероятности.

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте