Реализуйте представление кватерниона шести уравнений степеней свободы движения пользовательской переменной массы относительно осей тела
Уравнения Motion/6DOF
Для описания системы координат и поступательной динамики, см. описание блока для блока Custom Variable Mass 6DOF (Euler Angles).
Интегрирование скорости изменения вектора кватерниона приведено ниже. Усиление K управляет нормой вектора состояния кватерниона к 1,0, должно ε становиться ненулевым. Необходимо выбрать значение этого усиления с осторожностью, потому что большое значение улучшает уровень затухания ошибки в норме, но также и замедляет симуляцию, потому что введены быстрые движущие силы. Ошибка в величине в одном элементе вектора кватерниона распространена одинаково среди всех элементов, потенциально увеличив ошибку в векторе состояния.
Задает модули ввода и вывода:
Модули | Силы | Момент | Ускорение | Скорость | Положение | Масса | Инерция |
---|---|---|---|---|---|---|---|
| Ньютон | Ньютон-метр | Метры в секунду придали квадратную форму | Метры в секунду | Метры | Килограмм | Килограммометр придал квадратную форму |
| Фунт | Фунт ноги | Ноги в секунду придали квадратную форму | Ноги в секунду | Футы | Краткий заголовок | Отложите нога придала квадратную форму |
| Фунт | Фунт ноги | Ноги в секунду придали квадратную форму | Узлы | Футы | Краткий заголовок | Отложите нога придала квадратную форму |
Выберите тип массы, чтобы использовать:
| Масса является постоянной в течение симуляции. |
| Масса и инерция варьируются линейно как функция массового уровня. |
| Масса и изменения инерции настраиваемы. |
Custom Variable
выбор соответствует ранее описанным уравнениям движения.
Выберите представление использованию:
| Используйте Углы Эйлера в рамках уравнений движения. |
| Используйте кватернионы в рамках уравнений движения. |
Quaternion
выбор соответствует ранее описанным уравнениям движения.
Трехэлементный вектор для начального местоположения тела в плоской Наземной системе координат.
Трехэлементный вектор для начальной скорости в зафиксированной телом координатной системе координат.
Трехэлементный вектор для начальных Эйлеровых углов поворота [список, подача, отклонение от курса], в радианах.
Трехэлементный вектор для начальной буквы зафиксированные телом угловые уровни, в радианах в секунду.
Усиление, чтобы обеспечить норму вектора кватерниона равняется 1,0.
Установите этот флажок, чтобы добавить массовый скоростной порт родственника потока. Это - относительная скорость, при которой масса аккумулируется или удаляется.
Установите этот флажок, чтобы включить дополнительный выходной порт для ускорений в зафиксированных телом осях относительно инерционной системы координат. Вы обычно соединяете этот сигнал с акселерометром.
Присвойте уникальное имя каждому состоянию. Можно использовать имена состояния вместо путей к блоку во время линеаризации.
Чтобы присвоить имя к одному состоянию, введите уникальное имя между кавычками, например, 'velocity'
.
Чтобы присвоить имена к нескольким состояниям, введите разграниченный запятой список, окруженный фигурными скобками, например, {'a', 'b', 'c'}
. Каждое имя должно быть уникальным.
Если параметр пуст (' '
), никакое присвоение имени не происходит.
Имена состояния применяются только к выбранному блоку параметром имени.
Количество состояний должно разделиться равномерно среди количества имен состояния.
Можно задать меньше имен, чем состояния, но вы не можете задать больше имен, чем состояния.
Например, можно задать два имени в системе с четырьмя состояниями. Имя применяется к первым двум состояниям и второму имени к последним двум состояниям.
Чтобы присвоить имена состояния с переменной в рабочей области MATLAB®, введите переменную без кавычек. Переменная может быть вектором символов, массивом ячеек или структурой.
Задайте имена состояния положения.
Значением по умолчанию является ''
.
Задайте скоростные имена состояния.
Значением по умолчанию является ''
.
Задайте имена состояния вектора кватерниона. Этот параметр появляется, если параметр Representation устанавливается на Quaternion
.
Значением по умолчанию является ''
.
Задайте имена состояния уровня вращения тела.
Значением по умолчанию является ''
.
Входной параметр | Тип размерности | Описание |
---|---|---|
Сначала | Вектор | Содержит эти три приложенных силы. |
Второй | Вектор | Содержит три прикладных момента. |
Треть (Необязательно) | Вектор | Содержит одну или несколько скоростей изменения массы (положительный, если аккумулируется, отрицательный, если удалено). |
Четвертый | Скаляр | Содержит массу. |
Пятый | 3х3 матрица | Содержит скорость изменения матрицы тензора инерции. |
Шестой | 3х3 матрица | Содержит матрицу тензора инерции. |
Седьмой (Необязательно) | Трехэлементный вектор | Содержит одну или несколько относительных скоростей, при которых масса аккумулируется к или удаляется от тела в зафиксированных телом осях. |
Вывод | Тип размерности | Описание |
---|---|---|
Сначала | Трехэлементный вектор | Содержит скорость в плоской Наземной системе координат. |
Второй | Трехэлементный вектор | Содержит положение в плоской Наземной системе координат. |
Треть | Трехэлементный вектор | Содержит Эйлеровы углы поворота [список, подача, отклонение от курса], в радианах. |
Четвертый | 3х3 матрица | Содержит координатное преобразование от плоских Наземных осей до зафиксированных телом осей. |
Пятый | Трехэлементный вектор | Содержит скорость в зафиксированной телом системе координат. |
Шестой | Трехэлементный вектор | Содержит угловые уровни в зафиксированных телом осях, в радианах в секунду. |
Седьмой | Трехэлементный вектор | Содержит угловые ускорения в зафиксированных телом осях, в радианах в секунду придал квадратную форму. |
Восьмой | Трехэлементный вектор | Содержит ускорения в зафиксированных телом осях относительно системы координат тела. |
Девятый (Необязательно) | Трехэлементный вектор | Содержит ускорения в зафиксированных телом осях относительно инерционной системы координат (плоская Земля). Вы обычно соединяете этот сигнал с акселерометром. |
Блок принимает, что приложенные силы действуют в центре тяжести тела.
Стивенс, Брайан, и Франк Льюис, управление самолетом и Simulation, Second Edition, John Wiley & Sons, 2003.
Zipfel, Питер Х., моделирование и симуляция космической динамики аппарата. Второй выпуск, образовательный ряд AIAA, 2007.
6-я масса точки порядка (скоординированный рейс)
Пользовательская переменная масса 6DOF (углы Эйлера)
Пользовательская переменная масса 6DOF ECEF (кватернион)
Пользовательская переменная масса 6DOF ветер (кватернион)
Пользовательская переменная масса 6DOF ветер (углы ветра)
Масса простой переменной 6DOF (углы Эйлера)
Масса простой переменной 6DOF (кватернион)
Масса простой переменной 6DOF ECEF (кватернион)
Масса простой переменной 6DOF ветер (кватернион)