exponenta event banner

безоговорочный

Безусловный ожидаемый дефицит от Acerbi и Szekely

Описание

пример

TestResults = unconditional(ebts) проводит безусловный ожидаемый обратный тест дефицита (ES) Acerbi-Szekely (2014).

пример

[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value) добавляет необязательный аргумент пара имя-значение для TestLevel.

Примеры

свернуть все

Создание esbacktestbysim объект.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

Создайте отчет о безусловном тестировании ES.

TestResults = unconditional(ebts)
TestResults=3×10 table
    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.093       -0.13342         -0.16252           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.031       -0.25011          -0.2268           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.008       -0.57396         -0.38264           1966          1000         0.95   

Входные аргументы

свернуть все

esbacktestbysim (ebts), содержит копию данных ( PortfolioData, VarData, ESData, и Distribution свойства) и все комбинации идентификаторов портфеля, идентификаторов VaR и уровней VaR, подлежащих тестированию. Дополнительные сведения о создании esbacktestbysim объект, см. esbacktestbysim.

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Пример: [TestResults,SimTestStatistic] = unconditional(ebts,'TestLevel',0.99)

Уровень достоверности теста, указанный как пара, разделенная запятыми, состоящая из 'TestLevel' и числовое значение между 0 и 1.

Типы данных: double

Выходные аргументы

свернуть все

Результаты, возвращенные в виде таблицы, в которой строки соответствуют всем комбинациям идентификаторов портфеля, идентификаторов VaR и уровней VaR, подлежащих тестированию. Столбцы соответствуют следующей информации:

  • 'PortfolioID' - Идентификатор портфеля для данных

  • 'VaRID' - идентификатор VaR для каждого из предоставленных столбцов данных VaR;

  • 'VaRLevel' - уровень VaR для соответствующего столбца данных VaR;

  • 'Unconditional'- Категориальный массив с категориями «принять» и «отклонить», которые указывают на результат безусловного теста

  • 'PValue'- P-значение безусловного испытания

  • 'TestStatistic'- Безусловная статистика испытаний

  • 'CriticalValue'- Критическое значение для безусловного испытания

  • 'Observations'- Количество наблюдений

  • 'Scenarios'- Количество сценариев, моделируемых для получения значений p

  • 'TestLevel'- Уровень достоверности теста

Смоделированные значения статистики теста, возвращенные в виде NumVaRsоколо-NumScenarios числовой массив.

Подробнее

свернуть все

Безусловное испытание Acerbi и Szekely

Безусловный тест также известен как второй тест Ацерби-Секели.

Безусловный тест основан на безусловном соотношении

Est = Et [XtItpVaR]

где

Xt - результат портфеля, то есть доходность портфеля или прибыль и убыток портфеля за период t.

PVaR - вероятность отказа VaR, определяемая как уровень 1-VaR.

ESt - предполагаемый дефицит на период t.

It - индикатор отказа VaR на периоде t со значением 1, если Xt < -VaR и 0 в противном случае.

Безусловная статистика теста определяется как:

Zuncond=1NpVaR∑t=1NXtItESt+1

Значение теста

При предположении, что допущения распределения верны, ожидаемое значение тестовой статистики Zuncond является 0.

Это выражается как

E [Zuncond] = 0

Отрицательные значения статистики теста указывают на недооценку риска. Безусловный тест является односторонним тестом, который отвергает, когда есть доказательства того, что модель недооценивает риск (технические подробности о нулевых и альтернативных гипотезах см. Acerbi-Szekely, 2014). Безусловный тест отклоняет модель, когда значение p меньше 1 минус уровень достоверности теста.

Для получения дополнительной информации о действиях по моделированию статистики тестирования и подробных данных для вычисления значений и критических значений см. simulate.

Краевые кейсы

Статистика безусловного теста принимает значение 1 при отсутствии сбоев VaR в данных или в смоделированном сценарии.

1 также является максимально возможным значением для статистики теста. При ожидаемом количестве отказов NpVaR мал, распределение безусловной тестовой статистики имеет дискретный скачок вероятности при Zuncond = 1и вероятность того, что Zбез учета1 является 1. Значение p равно 1 в этих случаях, и результат теста должен 'accept', потому что нет никаких доказательств недооценки риска. Сценарии без сбоев более вероятны, чем ожидаемое количество отказов NpVaR становится меньше.

Ссылки

[1] Ацерби, С. и Б. Секели. Обратное тестирование ожидаемого дефицита. MSCI Inc. Декабрь 2014 года.

Представлен в R2017b