exponenta event banner

ellipticF

Неполный эллиптический интеграл первого рода

Описание

Примеры

Найти неполные эллиптические интегралы первого рода

Вычислите неполные эллиптические интегралы первого рода для этих чисел. Поскольку эти числа не являются символическими объектами, получаются результаты с плавающей запятой.

s = [ellipticF(pi/3, -10.5), ellipticF(pi/4, -pi),...
 ellipticF(1, -1),  ellipticF(pi/2, 0)]
s =
    0.6184    0.6486    0.8964    1.5708

Вычислите неполные эллиптические интегралы первого рода для тех же чисел, преобразованных в символические объекты. Для большинства символических (точных) чисел, ellipticF возвращает неразрешенные символьные вызовы.

s = [ellipticF(sym(pi/3), -10.5), ellipticF(sym(pi/4), -pi),...
ellipticF(sym(1), -1),  ellipticF(pi/6, sym(0))]
s =
[ ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi), ellipticF(1, -1), pi/6]

Использовать vpa для аппроксимации этого результата числами с плавающей запятой:

vpa(s, 10)
ans =
[ 0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]

Дифференцировать неполные эллиптические интегралы первого рода

Дифференцируйте это выражение, используя неполный эллиптический интеграл первого рода. ellipticE представляет неполный эллиптический интеграл второго рода.

syms m
diff(ellipticF(pi/4, m))
ans =
1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m) -...
ellipticE(pi/4, m)/(2*m*(m - 1))

Печать неполных и полных эллиптических интегралов

Постройте график неполных эллиптических интегралов ellipticF(phi,m) для phi = pi/4 и phi = pi/3. Также постройте график полного эллиптического интеграла ellipticK(m).

syms m
fplot([ellipticF(pi/4, m) ellipticF(pi/3, m) ellipticK(m)])
grid on

title('Elliptic integrals of the first kind')
legend('F(\pi/4,m)', 'F(\pi/3,m)', 'K(m)', 'Location', 'Best')

Figure contains an axes. The axes with title Elliptic integrals of the first kind contains 3 objects of type functionline. These objects represent F(\pi/4,m), F(\pi/3,m), K(m).

Входные аргументы

свернуть все

Ввод, определяемый как число, вектор, матрица или массив, или символьное число, переменная, массив, функция или выражение.

Ввод, определяемый как число, вектор, матрица или массив, или символьное число, переменная, массив, функция или выражение.

Подробнее

свернуть все

Неполный эллиптический интеграл первого рода

Полный эллиптический интеграл первого рода определяется следующим образом:

F (startm) =∫0φ11−msin2θdθ

Обратите внимание, что некоторые определения используют эллиптический модуль k или модульный угол α вместо параметра m. Они связаны как m = k2  = sin2α.

Совет

  • ellipticF возвращает результаты с плавающей запятой для числовых аргументов, не являющихся символьными объектами.

  • Для большинства символических (точных) чисел, ellipticF возвращает неразрешенные символьные вызовы. Аппроксимировать такие результаты с числами с плавающей запятой можно с помощью vpa.

  • По крайней мере один входной аргумент должен быть скаляром, либо оба аргумента должны быть векторами или матрицами одного размера. Если один входной аргумент является скаляром, а другой - вектором или матрицей, ellipticF расширяет скаляр в вектор или матрицу того же размера, что и другой аргумент со всеми элементами, равными этому скаляру.

  • ellipticF(pi/2, m) = ellipticK(m).

Ссылки

[1] Милн-Томсон, Л. М. «Эллиптические интегралы». Справочник по математическим функциям с формулами, графиками и математическими таблицами. (М. Абрамовиц и И. А. Стегун, ред.). Нью-Йорк: Дувр, 1972.

Представлен в R2013a