Полный эллиптический интеграл первого рода
ellipticK( возвращает полный эллиптический интеграл первого рода.m)
Вычислите полные эллиптические интегралы первого рода для этих чисел. Поскольку эти числа не являются символическими объектами, получаются результаты с плавающей запятой.
s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1), ellipticK(-5.5)]
s =
1.8541 2.2253 Inf 0.9325Вычислите полные эллиптические интегралы первого рода для тех же чисел, преобразованных в символические объекты. Для большинства символических (точных) чисел, ellipticK возвращает неразрешенные символьные вызовы.
s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),... ellipticK(sym(1)), ellipticK(sym(-5.5))]
s = [ ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]
Использовать vpa для аппроксимации этого результата числами с плавающей запятой:
vpa(s, 10)
ans = [ 1.854074677, 2.225253684, Inf, 0.9324665884]
Дифференцируйте эти выражения, используя полный эллиптический интеграл первого рода. ellipticE представляет полный эллиптический интеграл второго рода.
syms m diff(ellipticK(m)) diff(ellipticK(m^2), m, 2)
ans = - ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1)) ans = (2*ellipticE(m^2))/(m^2 - 1)^2 - (2*(ellipticE(m^2)/(2*m^2) -... ellipticK(m^2)/(2*m^2)))/(m^2 - 1) + ellipticK(m^2)/m^2 +... (ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +... ellipticE(m^2)/(m^2*(m^2 - 1))
Звонить ellipticK для этой символьной матрицы. Если входной аргумент является матрицей, ellipticK вычисляет полный эллиптический интеграл первого рода для каждого элемента.
ellipticK(sym([-2*pi -4; 0 1]))
ans = [ ellipticK(-2*pi), ellipticK(-4)] [ pi/2, Inf]
Постройте график полного эллиптического интеграла первого рода.
syms m fplot(ellipticK(m)) title('Complete elliptic integral of the first kind') ylabel('ellipticK(m)') grid on

ellipticK возвращает результаты с плавающей запятой для числовых аргументов, не являющихся символьными объектами.
Для большинства символических (точных) чисел, ellipticK возвращает неразрешенные символьные вызовы. Аппроксимировать такие результаты с числами с плавающей запятой можно с помощью vpa.
Если m является вектором или матрицей, то ellipticK(m) возвращает полный эллиптический интеграл первого рода, вычисленный для каждого элемента m.
Вы можете использовать ellipke вычислять эллиптические интегралы первого и второго видов в одном вызове функции.
[1] Милн-Томсон, Л. М. «Эллиптические интегралы». Справочник по математическим функциям с формулами, графиками и математическими таблицами. (М. Абрамовиц и И. А. Стегун, ред.). Нью-Йорк: Дувр, 1972.
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticPi | vpa