Подгонка модели VAR ИПЦ и уровня безработицы

Этот пример показывает, как оценить параметры модели VAR (4). Серия ответов представляет собой ежеквартальные показатели индекса потребительских цен (ИПЦ) и уровня безработицы.

Загрузите Data_USEconModel набор данных.

load Data_USEconModel

Постройте график двух серий на отдельных графиках.

figure;
plot(DataTable.Time,DataTable.CPIAUCSL);
title('Consumer Price Index');
ylabel('Index');
xlabel('Date');

Figure contains an axes. The axes with title Consumer Price Index contains an object of type line.

figure;
plot(DataTable.Time,DataTable.UNRATE);
title('Unemployment rate');
ylabel('Percent');
xlabel('Date');

Figure contains an axes. The axes with title Unemployment rate contains an object of type line.

CPI, по-видимому, растет экспоненциально.

Стабилизируйте ИПЦ путем преобразования его в ряд темпов роста. Синхронизируйте две серии путем удаления первого наблюдения из ряда уровней безработицы.

rcpi = price2ret(DataTable.CPIAUCSL);
unrate = DataTable.UNRATE(2:end);

Создайте модель VAR (4) по умолчанию с помощью синтаксиса shorthand.

Mdl = varm(2,4)
Mdl = 
  varm with properties:

     Description: "2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [2×1 vector of NaNs]
              AR: {2×2 matrices of NaNs} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix of NaNs]

Mdl является varm объект модели. Он служит шаблоном для оценки модели. MATLAB, ½ рассматривает любые NaN значения как неизвестные значения параметров, которые будут оценены. Для примера, Constant свойство является вектором 2 на 1 NaN значения. Поэтому константы модели являются параметрами модели, которые должны быть оценены.

Подбор модели к данным.

EstMdl = estimate(Mdl,[rcpi unrate])
EstMdl = 
  varm with properties:

     Description: "AR-Stationary 2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [0.00171639 0.316255]'
              AR: {2×2 matrices} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix]

EstMdl является varm объект модели. EstMdl структурно аналогично Mdl, но все параметры известны. Чтобы просмотреть предполагаемые параметры, можно отобразить их с помощью записи через точку.

Отобразите коэффициент первой задержки.

EstMdl.AR{1}
ans = 2×2

    0.3090   -0.0032
   -4.4834    1.3433

Отобразите сводные данные оценок, включающую все параметры, стандартные ошибки и p-значения для проверки нулевой гипотезы о том, что коэффициент равен 0.

summarize(EstMdl)
 
   AR-Stationary 2-Dimensional VAR(4) Model
 
    Effective Sample Size: 241
    Number of Estimated Parameters: 18
    LogLikelihood: 811.361
    AIC: -1586.72
    BIC: -1524
 
                      Value       StandardError    TStatistic      PValue  
                   ___________    _____________    __________    __________

    Constant(1)      0.0017164      0.0015988         1.0735        0.28303
    Constant(2)        0.31626       0.091961          3.439      0.0005838
    AR{1}(1,1)         0.30899       0.063356          4.877     1.0772e-06
    AR{1}(2,1)         -4.4834         3.6441        -1.2303        0.21857
    AR{1}(1,2)      -0.0031796      0.0011306        -2.8122       0.004921
    AR{1}(2,2)          1.3433       0.065032         20.656      8.546e-95
    AR{2}(1,1)         0.22433       0.069631         3.2217      0.0012741
    AR{2}(2,1)          7.1896          4.005         1.7951       0.072631
    AR{2}(1,2)       0.0012375      0.0018631         0.6642        0.50656
    AR{2}(2,2)        -0.26817        0.10716        -2.5025       0.012331
    AR{3}(1,1)         0.35333       0.068287         5.1742     2.2887e-07
    AR{3}(2,1)           1.487         3.9277        0.37858          0.705
    AR{3}(1,2)       0.0028594      0.0018621         1.5355        0.12465
    AR{3}(2,2)        -0.22709         0.1071        -2.1202       0.033986
    AR{4}(1,1)       -0.047563       0.069026       -0.68906        0.49079
    AR{4}(2,1)          8.6379         3.9702         2.1757       0.029579
    AR{4}(1,2)     -0.00096323      0.0011142       -0.86448        0.38733
    AR{4}(2,2)        0.076725       0.064088         1.1972        0.23123

 
   Innovations Covariance Matrix:
    0.0000   -0.0002
   -0.0002    0.1167

 
   Innovations Correlation Matrix:
    1.0000   -0.0925
   -0.0925    1.0000

См. также

Объекты

Функции

Похожие темы