InverseGaussianDistribution

Объект обратного Гауссова распределения вероятностей

Описание

Система координат InverseGaussianDistribution объект состоит из параметров, описания модели и выборочных данных для обратного Гауссового распределения вероятностей.

Также известное как распределение Вальда, обратное Гауссово используется для моделирования неотрицательных положительно искаженных данных. Обратные Гауссовы распределения имеют много сходств со стандартными Гауссовыми (нормальными) распределениями, которые приводят к приложениям в инференциальной статистике.

Обратное Гауссово распределение использует следующие параметры.

ПараметрОписаниеПоддержка
muМасштабный параметрμ>0
lambdaПараметр формыλ>0

Создание

Существует несколько способов создать InverseGaussianDistribution объект распределения вероятностей.

  • Создайте распределение с заданными значениями параметров используя makedist.

  • Подбор распределения к данным с помощью fitdist.

  • Интерактивно подгоняйте распределение к данным с помощью приложения Distribution Fitter.

Свойства

расширить все

Параметры распределения

Шкала параметр обратного Гауссова распределения, заданный как положительная скалярная величина значение.

Типы данных: single | double

Параметр формы для обратного Гауссова распределения, заданный как положительная скалярная величина значение.

Типы данных: single | double

Характеристики распределения

Это свойство доступно только для чтения.

Логический флаг для усеченного распределения, заданный как логическое значение. Если IsTruncated равен 0, распределение не усечено. Если IsTruncated равен 1, распределение усечено.

Типы данных: logical

Это свойство доступно только для чтения.

Количество параметров для распределения вероятностей, заданное как положительное целое значение.

Типы данных: double

Это свойство доступно только для чтения.

Ковариационная матрица оценок параметров, заданная как p -by - p матрица, где p - количество параметров в распределении. The (i, j) элемент является ковариацией между оценками ith параметра и j-й параметр. The (i, i) элемент - предполагаемое отклонение i-й параметр. Если параметр i фиксируется, а не оценивается путем подгонки распределения к данным, затем (i, i) элементы ковариационной матрицы 0.

Типы данных: double

Это свойство доступно только для чтения.

Логический флаг для фиксированных параметров, заданный как массив логических значений. Если 0, соответствующий параметр в ParameterNames массив не фиксирован. Если 1, соответствующий параметр в ParameterNames массив фиксирован.

Типы данных: logical

Это свойство доступно только для чтения.

Значения параметров распределения, заданные как вектор.

Типы данных: single | double

Это свойство доступно только для чтения.

Интервал усечения для распределения вероятностей, заданный как вектор, содержащий нижние и верхние контуры усечения.

Типы данных: single | double

Другие свойства объекта

Это свойство доступно только для чтения.

Имя распределения вероятностей, заданное как вектор символов.

Типы данных: char

Это свойство доступно только для чтения.

Данные, используемые для подбора кривой распределения, заданные как структура, содержащая следующее:

  • data: Вектор данных, используемый для подбора кривой распределения.

  • cens: Вектор цензуры, или пустой, если нет.

  • freq: Вектор частоты, или пустой, если нет.

Типы данных: struct

Это свойство доступно только для чтения.

Описания параметров распределения, заданные как массив ячеек из векторов символов. Каждая камера содержит краткое описание одного параметра распределения.

Типы данных: char

Это свойство доступно только для чтения.

Имена параметров распределения, заданные как массив ячеек из векторов символов.

Типы данных: char

Функции объекта

cdfКумулятивная функция распределения
icdfОбратная кумулятивная функция распределения
iqrМежквартильная область значений
meanСреднее распределения вероятностей
medianМедиана распределения вероятностей
negloglikОтрицательная логарифмическая правдоподобность распределения вероятностей
paramciДоверительные интервалы для параметров распределения вероятностей
pdfФункция плотности вероятностей
proflikПрофиль функции правдоподобия для распределения вероятностей
randomСлучайные числа
stdСтандартное отклонение распределения вероятностей
truncateОбрезка объекта распределения вероятностей
varОтклонение распределения вероятностей

Примеры

свернуть все

Создайте обратный объект Гауссова распределения с помощью значений параметров по умолчанию.

pd = makedist('InverseGaussian')
pd = 
  InverseGaussianDistribution

  Inverse Gaussian distribution
        mu = 1
    lambda = 1

Создайте обратный объект Гауссова распределения путем настройки значений параметров.

pd = makedist('InverseGaussian','mu',2,'lambda',4)
pd = 
  InverseGaussianDistribution

  Inverse Gaussian distribution
        mu = 2
    lambda = 4

Вычислите стандартное отклонение распределения.

s = std(pd)
s = 1.4142
Введенный в R2013a
Для просмотра документации необходимо авторизоваться на сайте