Гибридный электромобиль (HEV) разделенный входной мощностью пример готовых узлов представляет полную модель HEV с двигателем внутреннего сгорания, передачей, батареей, двигателем, генератором и сопоставленными алгоритмами управления трансмиссии. Используйте HEV разделенный входной мощностью пример готовых узлов для Программное-аппаратного тестирования, сравнительного анализа, и управляйте оптимизацией параметров управления разделенного степенью гибрида как Toyota® Prius®. Чтобы создать и открыть рабочую копию HEV разделенный входной мощностью проект примера готовых узлов, войти
По умолчанию HEV разделенный входной мощностью пример готовых узлов сконфигурирован с:Металлический никелем гидрид (NiMH) блок батарей
Сопоставленные электродвигатели
Сопоставленный двигатель с искровым зажиганием
Эта схема показывает настройку трансмиссии.
Эта таблица описывает блоки и подсистемы в примере готовых узлов, указывая, какие подсистемы содержат варианты. Чтобы реализовать образцовые варианты, пример готовых узлов использует различные подсистемы.
Элемент примера готовых узлов | Описание | Варианты |
---|---|---|
Анализируйте степень и энергию |
Нажмите Analyze Power and Energy, чтобы открыть live скрипт. Запустите скрипт, чтобы оценить и сообщить о степени и потреблении энергии в компоненте - и уровень системы. Для получения дополнительной информации о live скрипте, смотрите, Анализируют Степень и энергию. | Нет данных |
Управляйте Исходным блоком Цикла | Генерирует стандартную или заданную пользователями скорость цикла диска по сравнению с профилем времени. Блок вывод является выбранным или заданным автомобилем продольная скорость. | |
Подсистема Environment | Создает переменные окружения, включая дорожный класс, скорость ветра, и атмосферную температуру и давление. | |
Подсистема Longitudinal Driver |
Использует Продольный вариант Драйвера или Разомкнутого цикла, чтобы сгенерировать нормированное ускорение и тормозящие команды.
| ✓ |
Подсистема Controllers | Реализует управляющий модуль трансмиссии (PCM), содержащий разделенный входной мощностью гибридный управляющий модуль (HCM) и модуль управления двигателем (ECM). | ✓ |
Подсистема Passenger Car | Реализует гибридный легковой автомобиль, который содержит ходовую часть, электрический объект и подсистемы двигателей. | ✓ |
Подсистема Visualization | Производительность уровня автомобиля отображений, состояние заряда (SOC) батареи, экономия топлива и результаты эмиссии, которые полезны для соответствия трансмиссии и анализа выбора компонента. |
Нажмите Analyze Power and Energy, чтобы открыть live скрипт. Запустите скрипт, чтобы оценить и сообщить о степени и потреблении энергии в компоненте - и уровень системы. Для получения дополнительной информации о live скрипте, смотрите, Анализируют Степень и энергию.
Скрипт обеспечивает:
Полные энергетические сводные данные, которые можно экспортировать в электронную таблицу Excel®.
Завод по производству двигателей, электрический объект и эффективность объекта ходовой части, включая гистограмму механизма времени потрачены в различной эффективности завода по производству двигателей.
Регистрация данных так, чтобы можно было использовать Инспектора данных моделирования (SDI), чтобы анализировать эффективность трансмиссии и энергетические сигналы передачи.
Для получения дополнительной информации о live скрипте, смотрите, Анализируют Степень и энергию.
Блок Drive Cycle Source
генерирует целевую скорость автомобиля для выбранного или заданного цикла диска. Пример готовых узлов имеет эти опции.
Синхронизация | Вариант | Описание |
---|---|---|
Выведите шаг расчета |
| Непрерывные команды оператора |
| Дискретные команды оператора |
Подсистема Longitudinal Driver
генерирует нормированное ускорение и тормозящие команды. Пример готовых узлов имеет эти варианты.
Блокируйте варианты | Описание | ||
---|---|---|---|
Продольный драйвер (значение по умолчанию) | Управление |
| Управление PI с отслеживанием завершения и прямых каналом усилений, которые являются функцией скорости автомобиля. |
| Оптимальный предварительный просмотр одно точки (предусматривает) управление. | ||
| Управление пропорциональным интегралом (PI) с отслеживанием завершения и прямых каналом усилений. | ||
Фильтр нижних частот (LPF) |
| Используйте LPF при целевой ошибке скорости для более сглаженного управления. | |
| Не используйте фильтр при ошибке скорости. | ||
Сдвиг |
| Модели графика Stateflow®, противоположные, нейтральные, и планирование переключения передач диска. | |
| Введите механизм, состояние автомобиля, и скоростная обратная связь генерирует ускорение и тормозящие команды, чтобы отследить вперед и инвертировать движение автомобиля. | ||
| Никакая передача. | ||
| Модели диаграммы Stateflow, противоположные, нейтральные, парк и планирование переключения передач N-скорости. | ||
Разомкнутый цикл | Подсистема регулирования без обратной связи. В подсистеме можно сконфигурировать ускорение, замедление, механизм, и сжать команды с постоянными или основанными на сигнале входными параметрами. |
Подсистема Controller
имеет PCM, содержащий разделенный входной мощностью HCM и ECM. У контроллера есть эти варианты.
Контроллер | Вариант | Описание |
---|---|---|
ECM | SiEngineController (значение по умолчанию) | Контроллер двигателя с искровым зажиганием |
Разделение входной мощности HCM | Series Regen Brake (значение по умолчанию) | Торможение трения обеспечивает крутящий момент, не предоставленный регенеративным моторным торможением. |
Parallel Regen Braking | Торможение трения и регенеративное моторное торможение независимо обеспечивают крутящий момент. |
HCM разделения входной мощности реализует динамический контрольный контроллер, который определяет крутящий момент механизма, крутящий момент генератора, моторный крутящий момент и команды тормозного давления. А именно, разделенный входной мощностью HCM:
Преобразовывает сигнал педали акселератора драйвера в запрос крутящего момента колеса. Алгоритм использует оптимальный крутящий момент механизма и максимальные моторные кривые крутящего момента, чтобы вычислить общий крутящий момент трансмиссии в колесах.
Преобразовывает сигнал педали тормоза драйвера в запрос тормозного давления. Алгоритм умножает сигнал педали тормоза на максимальное тормозное давление.
Реализует регенеративный алгоритм торможения для тягового мотора, чтобы восстановить максимальную сумму кинетической энергии от автомобиля.
Реализует виртуальную систему управления батареи. Алгоритм выводит динамический выброс и пределы степени заряда как функции батареи SOC.
Определяет рабочий режим автомобиля через ряд правил и логику решения, реализованную в Stateflow. Рабочие режимы являются функциями скорости колеса и требуемого крутящего момента колеса. Алгоритм использует запрос степени колеса, педаль акселератора, батарея SOC и правила скорости автомобиля перейти между режимами HEV и электромобилем (EV).
Режим | Описание |
---|---|
EV |
Тяговый мотор обеспечивает запрос крутящего момента колеса. |
HEV – Заряжайте поддержку (малая мощность) |
|
HEV – Заряжайте истощение (большая мощность) |
|
Стационарный |
В то время как автомобиль в покое, механизм и генератор могут обеспечить дополнительную зарядку, если батарея SOC ниже минимального значения SOC. |
Управляет двигателем, генератором и механизмом через ряд правил и логику решения, реализованную в Stateflow.
Управление | Описание |
---|---|
Механизм |
|
Генератор |
|
Двигатель |
Основанный на правилах алгоритм управления электропитанием вычисляет моторный крутящий момент, который не превышает динамические пределы степени. |
Чтобы реализовать легковой автомобиль, подсистема Passenger Car
содержит ходовую часть, электрический объект и подсистемы двигателей. Чтобы создать ваши собственные варианты механизма для примера готовых узлов, используйте CI и шаблоны проекта двигателя с искровым зажиганием. Пример готовых узлов имеет эти варианты.
Подсистема ходовой части | Вариант | Описание | |
---|---|---|---|
Дифференциал и соответствие | All Wheel Drive | Сконфигурируйте ходовую часть для всего колеса, переднего колеса или заднего привода. Для полноприводного варианта можно сконфигурировать тип связывающегося крутящего момента. | |
Front Wheel Drive (значение по умолчанию) | |||
Rear Wheel Drive | |||
Автомобиль | Vehicle Body 3 DOF Longitudinal | Сконфигурированный для 3 степеней свободы | |
Колеса и тормоза |
| Для колес можно сконфигурировать тип:
Для производительности и ясности, чтобы определить продольную силу каждого колеса, варианты реализуют блок Longitudinal Wheel. Чтобы определить общую продольную силу всех колес, действующих на ось, варианты используют масштабный коэффициент, чтобы умножить силу одного колеса количеством колес на оси. При помощи этого подхода, чтобы вычислить общую силу, варианты принимают равный промах шины и загружающий в передних и задних осях, который характерен для продольных исследований трансмиссии. Если дело обстоит не так, например, когда трение или загрузки расходятся в левых и правых сторонах осей, уникальные Продольные блоки Колеса использования, чтобы вычислить независимые силы. Однако использование уникальных блоков, чтобы смоделировать каждое колесо увеличивает сложность модели и вычислительную стоимость. | |
| |||
|
Электрическая подсистема объекта | Вариант | Описание |
---|---|---|
Батарея и конвертер DC-DC | BattHevIps | Сконфигурированный с батареей NiMH |
Генератор | GenMapped (значение по умолчанию) | Сопоставленный генератор с неявным контроллером |
GenDynamic | Внутренний постоянный магнит синхронный двигатель (PMSM) с контроллером | |
Двигатель | MotMapped (значение по умолчанию) | Сопоставленный двигатель с неявным контроллером |
MotDynamic | Внутренний постоянный магнит синхронный двигатель (PMSM) с контроллером |
Подсистемы двигателей | Вариант | Описание | |
---|---|---|---|
Механизм | SiMappedEngine (значение по умолчанию) | Сопоставленный двигатель с искровым зажиганием |
[1] Balazs, A., Morra, E. и Pischinger, S., оптимизация наэлектризованных трансмиссий для городских автомобилей. Технический документ 2011-01-2451 SAE. Варрендэйл, PA: международный журнал SAE альтернативных трансмиссий, 2012.
[2] Burress, T. A. и др., Оценка 2 010 Toyota Prius Hybrid Synergy Drive System. Технический отчет ORNL/TM-2010/253. Американское Министерство энергетики, Окриджская национальная лаборатория, март 2011.
[3] Rask, E., Duoba, M., Лошс-Буш, H. и Bocci, D., Модельный год 2010 (Генерал 3) Toyota Prius Level 1 Testing Report. Технический отчет ANL/ES/RP-67317. Американское Министерство энергетики, Национальная лаборатория Аргонна, сентябрь 2010.
Контроллер CI | Engine ядра CI | Батарея таблицы данных | Управляйте источником цикла | Внутренний контроллер PM | Внутренний PMSM | Продольный драйвер | Сопоставленный Engine CI | Сопоставленный Двигатель с искровым зажиганием | Контроллер SI | Engine ядра SI