optByBatesFFT

Цена опции моделью Bates с помощью БПФ и FRFT

Синтаксис

[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
[Price,StrikeOut] = optByBatesFFT(___,Name,Value)

Описание

пример

[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) вычисляет европейскую цену опции ванили моделью Bates, с помощью БПФ Топкого-места-Madan и методов Chourdakis FRFT.

пример

[Price,StrikeOut] = optByBatesFFT(___,Name,Value) добавляют дополнительные аргументы пары "имя-значение".

Примеры

свернуть все

Используйте optByBatesFFT, чтобы калибровать сетку забастовки БПФ, вычислить цены опции и построить поверхность цены опции.

Задайте переменные опции, и убавляет параметры модели

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Вычислите цены опции за целый БПФ (или FRFT) сетка забастовки, не задавая Strike

Вычислите цены опции и также выведите соответствующие забастовки. Если вход Strike будет пуст ([]), цены опции будут вычислены на целом БПФ (или FRFT) сетка забастовки. БПФ (или FRFT) сетка забастовки определяется как exp(log-strike grid), где каждый столбец сетки логарифмической забастовки имеет точки NumFFT с LogStrikeStep, располагающим с интервалами, которые примерно сосредоточены вокруг каждого элемента log(AssetPrice). Значение по умолчанию для NumFFT 2^12. В дополнение к ценам в первом выводе дополнительный последний вывод содержит соответствующие забастовки.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid
MinStrike = 2.9205e-135
MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid
MaxStrike = 1.8798e+138
% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]
ans = 7×2

   50.4929   29.4990
   58.8640   21.4545
   68.6231   12.8544
   80.0000    5.3484
   93.2631    1.2404
  108.7251    0.1648
  126.7505    0.0152

Измените количество БПФ (или FRFT) точки и сравните с optByBatesNI

Попробуйте различное количество БПФ (или FRFT) точки и сравните результаты с прямым численным интегрированием. В отличие от optByBatesFFT, который использует БПФ (или FRFT) методы для быстрого вычисления через целую область значений забастовок, функция optByBatesNI использует прямое численное интегрирование, и это обычно медленнее, специально для нескольких забастовок. Однако значения, вычисленные optByBatesNI, могут служить сравнительным тестом для корректировки настроек для optByBatesFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)
ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________

    12.696       66.237         66.696      0.45912
    23.449        55.86         56.103      0.24239
    43.312       36.418         36.541      0.12246
        80       5.4029         5.3484     0.054469
    147.76     0.044921      0.0010864     0.043835
    272.93    0.0094655    -7.8249e-08    0.0094656
    504.11    0.0024986    -3.3873e-07    0.0024989

Внесите дальнейшие корректировки в БПФ (или FRFT)

Если значения в выводе CallFFT существенно отличаются от тех в CallNI, попытайтесь внести изменения в настройки optByBatesFFT, такие как CharacteristicFcnStep, LogStrikeStep, NumFFT, DampingFactor, и так далее. Обратите внимание на то, что, если (LogStrikeStep * CharacteristicFcnStep) 2*pi / NumFFT, БПФ используется. В противном случае FRFT используется.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...    
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)
ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76     5.4682     5.4682    1.5355e-08
    79.84     5.4281     5.4281    1.4833e-08
    79.92     5.3882     5.3882    1.4244e-08
       80     5.3484     5.3484     1.359e-08
    80.08     5.3088     5.3088    1.2875e-08
    80.16     5.2693     5.2693    1.2101e-08
    80.24       5.23       5.23    1.1272e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of |Strike| inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike
MinStrike = 47.9437
MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike
MaxStrike = 133.3566

Вычислите цену опции за одну забастовку

Однажды желаемый БПФ (или FRFT) настройки определяются, используют вход Strike, чтобы задать забастовки (вместо того, чтобы обеспечить пустой массив). Если заданные забастовки не совпадают со значением на БПФ (или FRFT) сетка забастовки, выходные параметры интерполированы на заданных забастовках.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)
Call = 5.3484

Вычислите цены опции за вектор забастовок

Используйте вход Strike, чтобы задать забастовки.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)
Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073

Вычислите цены опции за вектор забастовок и вектор дат тех же длин

Используйте вход Strike, чтобы задать забастовки. Кроме того, вход Maturity может быть вектором, но он должен совпадать с длиной вектора Strike, если аргумент пары "имя-значение" ExpandOutput не установлен в "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output
Call = 5×1

    9.7516
   10.3931
   10.8865
   11.2990
   11.6491

Расширьте Выходные параметры для поверхности

Установите аргумент пары "имя-значение" ExpandOutput "true" расширять выходные параметры в NStrikes-by-NMaturities матрицы. В этом случае они - квадратные матрицы.

[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output
Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9952   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Вычислите цены опции за вектор забастовок и вектор дат различных длин

Когда ExpandOutput является "true", NStrikes не должны совпадать с NMaturities (то есть, вывод NStrikes-by-NMaturities матрица может быть прямоугольным).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output
Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9952   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491

Вычислите цены опции за вектор забастовок и вектор цен активов

Когда ExpandOutput является "true", выводом может также быть NStrikes-by-NAssetPrices прямоугольная матрица путем принятия вектора цен активов.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output
Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8112    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6652
    2.0825    3.6818    5.8705    8.6158

Постройте поверхность цены опции

Используйте вход Strike, чтобы задать забастовки. Увеличьте значение для NumFFT, чтобы поддержать более широкую область значений забастовок. Кроме того, вход Maturity может быть вектором. Установите ExpandOutput на "true" выводить поверхность как NStrikes-by-NMaturities матрица.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase |NumFFT| to support a wider range of strikes
NumFFT = 2^13;

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

Входные параметры

свернуть все

Постоянно составляемая безрисковая процентная ставка, заданная как скалярное десятичное значение.

Типы данных: double

Текущая цена базового актива, заданная как числовое значение с помощью скаляра или NINST-by-1 или NColumns-by-1 вектор.

Для получения дополнительной информации о соответствующих размерностях для AssetPrice смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double

Расчетный день опции, заданный как NINST-by-1 или NColumns-by-1 вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов. Дата Settle должна быть перед датой Maturity.

Для получения дополнительной информации о соответствующих размерностях для Settle смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double | char | datetime | string

Дата погашения опции, заданная как NINST-by-1 или NColumns-by-1 вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов.

Для получения дополнительной информации о соответствующих размерностях для Maturity смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double | char | datetime | string

Определение опции, заданной как NINST-by-1 или NColumns-by-1 вектор с помощью массива ячеек из символьных векторов или строковых массивов со значениями 'call' или 'put'.

Для получения дополнительной информации о соответствующих размерностях для OptSpec смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: cell | string

Значение цены исполнения опциона опции, заданное как NINST-by-1, NRows-by-1, NRows-by-NColumns вектор цен исполнения опциона.

Если этот вход является пустым массивом ([]), цены опции вычисляются на целом БПФ (или FRFT) сетка забастовки, которая определяется как exp(log-strike grid). Каждый столбец сетки логарифмической забастовки has 'NumFFT' указывает с 'LogStrikeStep', располагающим с интервалами, которые примерно сосредоточены вокруг каждого элемента log(AssetPrice).

Для получения дополнительной информации о соответствующих размерностях для Strike смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double

Начальное отклонение актива подчиненного, заданного как скалярное числовое значение.

Типы данных: double

Долгосрочное отклонение актива подчиненного, заданного как скалярное числовое значение.

Типы данных: double

Средняя скорость версии для актива подчиненного, заданного как скалярное числовое значение.

Типы данных: double

Энергозависимость отклонения актива подчиненного, заданного как скалярное числовое значение.

Типы данных: double

Корреляция между процессами Вайнера для базового актива и его отклонения, заданного как скалярное числовое значение.

Типы данных: double

Среднее значение случайного размера скачка процента (J), заданный как скалярное десятичное значение, где log (1+J) нормально распределен со средним значением (log (1+MeanJ)-0.5*JumpVol^2) и стандартное отклонение JumpVol.

Типы данных: double

Стандартное отклонение log (1+J), где J является случайным размером скачка процента, заданным как скалярное десятичное значение.

Типы данных: double

Ежегодная частота процесса скачка Пуассона, заданного как скалярное числовое значение.

Типы данных: double

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: [Price, StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Дневное количество инструмента, заданного как пара, разделенная запятой, состоящая из 'Basis' и скаляра с помощью поддерживаемого значения:

  •  0 = фактический/фактический

  •  1 = 30/360 (СИА)

  •  2 = Фактический/360

  •  3 = Фактический/365

  •  4 = 30/360 (PSA)

  •  5 = 30/360 (ISDA)

  •  6 = 30/360 (европеец)

  •  7 = Фактический/365 (японский язык)

  •  8 = фактический/фактический (ICMA)

  •  9 = Фактический/360 (ICMA)

  •  10 = Фактический/365 (ICMA)

  •  11 = 30/360E (ICMA)

  •  12 = Фактический/365 (ISDA)

  •  13 = ШИНА/252

Для получения дополнительной информации смотрите основание.

Типы данных: double

Постоянно составляемая доходность базовых активов, заданная как пара, разделенная запятой, состоящая из 'DividendYield' и скалярного числового значения.

Типы данных: double

Надбавка за риск энергозависимости, заданная как пара, разделенная запятой, состоящая из 'VolRiskPremium' и скалярного числового значения.

Типы данных: double

Отметьте указание на Небольшую формулировку Прерывания Хестона Albrecher и др. , заданный как пара, разделенная запятой, состоящая из 'LittleTrap' и логического:

  • tRUE Используйте Albrecher и др. формулировка.

  • ложь Используйте исходное формирование Хестона.

Типы данных: логический

Количество узлов решетки в переменной характеристической функции и в каждом столбце сетки логарифмической забастовки, заданной как пара, разделенная запятой, состоящая из 'NumFFT' и скалярного числового значения.

Типы данных: double

Интервал сетки переменной характеристической функции, заданный как пара, разделенная запятой, состоящая из 'CharacteristicFcnStep' и скалярного числового значения.

Типы данных: double

Интервал сетки логарифмической забастовки, заданный как пара, разделенная запятой, состоящая из 'LogStrikeStep' и скалярного числового значения.

Примечание

Если (LogStrikeStep *CharacteristicFcnStep) 2*pi/NumFFT, БПФ используется. В противном случае FRFT используется.

Типы данных: double

Затухание фактора для формулировки Топкого-места-Madan, заданной как пара, разделенная запятой, состоящая из 'DampingFactor' и скалярного числового значения.

Типы данных: double

Тип квадратуры, заданной как пара, разделенная запятой, состоящая из 'Quadrature' и односимвольного векторного массива или массива строк со значением 'simpson' или 'trapezoidal'.

Типы данных: char | string

Отметьте, чтобы расширить выходные параметры, заданные как пара, разделенная запятой, состоящая из 'ExpandOutput' и логического:

  • tRUE Если true, выходными параметрами является NRows NColumns матрицами. NRows является количеством борьбы за каждый столбец, и это определяется входом Strike. Например, Strike может быть NRows-by-1 вектор или NRows-by-NColumns матрица. Если Strike пуст, NRows равен NumFFT. NColumns определяется размерами AssetPrice, Settle, Maturity и OptSpec, который должен все быть или скаляром или NColumns-by-1 векторы.

  • ложь Если false, выходными параметрами является NINST-by-1 векторы. Кроме того, входные параметры Strike, AssetPrice, Settle, Maturity и OptSpec должны все быть или скаляром или NINST-by-1 векторы.

Типы данных: логический

Выходные аргументы

свернуть все

Цены опции, возвращенные как NINST-by-1 или NRows-by-NColumns, в зависимости от ExpandOutput.

Забастовки, соответствующие Price, возвращенному как NINST-by-1 или NRows-by-NColumns, в зависимости от ExpandOutput.

Больше о

свернуть все

Убавляет стохастическую модель диффузии скачка энергозависимости

Модель Бэйтса (Бэйтс (1996)) является расширением модели Хестона, где в дополнение к стохастической энергозависимости параметры диффузии скачка, подобные Мертону (1976), были также добавлены, чтобы смоделировать внезапные перемещения цен активов.

Стохастическое дифференциальное уравнение:

dSt=(rqλpμJ)Stdt+vtStdWt+JStdPtdvt=κ(θvt)dt+σvvtdWtE[dWtdWtv]=pdtprob (dPt=1)=λpdt

где

r является непрерывным безрисковым уровнем.

q является непрерывной дивидендной доходностью.

S t является ценой активов во время t.

v t является отклонением цен активов во время t.

J является случайным условным выражением размера скачка процента на появлении скачка, где ln (1+J) нормально распределен со средним значением ln(1+μJ)δ22 и стандартное отклонение δ, и (1+J) имеет логарифмически нормальное распределение:

1(1+J)δ2πexp{[ln(1+J)(ln(1+μJ)δ22]2δ22}

v 0 является начальным отклонением цены активов в t = 0 (v 0> 0).

θ является долгосрочным уровнем отклонения для (θ> 0).

κ является скоростью возвращения к среднему уровню для (κ> 0).

σ v является энергозависимостью отклонения для (σ v> 0).

p является корреляцией между процессами Вайнера W t и Wtv для (-1 ≤ p ≤ 1).

μ J является средним значением J для (μ J>-1).

δ является стандартным отклонением ln (1+J) для (δ ≥ 0).

λp ежегодная частота (интенсивность) Пуассоновского процесса P t для (λp ≥ 0).

Характеристическая функция fBatesj(ϕ) для j = 1 (средняя мера цен активов) и j =2 (нейтральная к риску мера):

fBates(ϕ)=exp(Cj+Djv0+iϕlnSt)exp(λpτ(1+μJ)mj+12[(1+μj)iϕeδ2(mjiϕ+(iϕ)22)1]λpτμJiϕ)mj={m1=12m2=12}Cj=(rq)iϕτ+κθσv2[(bjpσviϕ+dj)τ2ln(1gjedjτ1gj)]Dj=bjpσviϕ+djσv2(1edjτ1gjedjτ)gj=bjpσviϕ+djbjpσviϕdjdj=(bjpσviϕ)2σv2(2ujiϕϕ2)где для j=1,2:u1=12,u2=12,b1=κ+λVolRiskpσv,b2=κ+λVolRisk

где

ϕ является переменной характеристической функции.

ƛ VolRisk является надбавкой за риск энергозависимости.

τ является временем к зрелости для (τ = T - t).

i является модульным мнимым числом для (i 2 =-1).

Определения для C j и D j под “Небольшим Прерыванием Хестона” Albrecher и др. (2007):

Cj=(rq)iϕτ+κθσv2[(bjpσviϕdj)τ2ln(1εjedjτ1εj)]Dj=bjpσviϕdjσv2(1edjτ1εjedjτ)εj=bjpσviϕdjbjpσviϕ+dj

Формулировка топкого-места-Madan

Топкое место и Мадан (1999) формулировка являются популярной измененной реализацией Хестона (1993) среда.

Вместо того, чтобы вычислять вероятности, P 1 и P 2 как промежуточное звено продвигается, Топкое место и Мадан разработали альтернативное выражение так, чтобы взятие его обратного преобразования Фурье дало саму цену опции непосредственно.

Call(k)=eαkπ0Ре[eiukψ(u)]duψ(u)=erτf2(ϕ=(u(α+1)i))α2+αu2+iu(2α+1)Put(K)=Call(K)+KerτSteqτ

где

r является непрерывным безрисковым уровнем.

q является непрерывной дивидендной доходностью.

S t является ценой активов во время t.

τ время к зрелости (τ = T-t).

Call (K) является досрочной ценой в забастовке K.

Put (K) является помещенной ценой в забастовке K

i является модульным мнимым числом (i 2 =-1)

ϕ переменная характеристической функции.

α фактор затухания.

u является переменной характеристической функции для интегрирования, где ϕ = (u - (α + 1) i).

f 2 (ϕ) является характеристической функцией для P 2.

P 2 является вероятностью S t> K под нейтральной к риску мерой для модели.

Чтобы применить БПФ или FRFT к этой формулировке, переменная характеристической функции для интегрирования, u, дискретизируется в NumFFT (N) точки с размером шага CharacteristicFcnStep (Δu), и логарифмическая забастовка, k дискретизируется в точки N с размером шага LogStrikeStep (Δk).

Дискретизированная переменная характеристической функции для интегрирования, u j (для j = 1,2,3, …, N), имеет минимальное значение 0 и максимальное значение (N-1) (Δu), и это аппроксимирует непрерывный диапазон интегрирования от 0 до бесконечности.

Дискретизированная сетка логарифмической забастовки, k n (для n = 1, 2, 3, N) приблизительно сосредоточена вокруг ln (S t) с минимальным значением

ln(St)N2Δk

и максимальное значение

ln(St)+(N21)Δk

Где минимальная допустимая забастовка

Stexp(N2Δk)

и максимальная допустимая забастовка

Stexp[(N21)Δk]

В результате дискретизации выражение для колл-опциона становится

Call(kn)=Δueαknπj=1NРе[eiΔkΔu(j1)(n1)eiuj[NΔk2ln(St)]ψ(uj)]wj

где

Δu является размером шага дискретизированной переменной характеристической функции для интегрирования.

Δk является размером шага дискретизированной логарифмической забастовки.

N является количеством точек FFT/FRFT

w j является весами для квадратуры, используемой для приближения интеграла.

БПФ используется, чтобы выполнить вышеупомянутое выражение, если Δk и Δu подвергаются следующему ограничению:

ΔkΔu=(2πN)

в противном случае функции используют метод FRFT, описанный в Chourdakis (2005).

Ссылки

[1] Albrecher, H., Майер, P., Schoutens, W. и Tistaert, J. "Небольшое прерывание Хестона". Рабочий документ, Линц и технологический университет Граца, K.U. Левен, финансовые рынки ING, 2006.

[2] Убавляет, D. S. “Скачки и стохастическая энергозависимость: процессы обменного курса, неявные в опциях немецкой марки”. Анализ финансовых исследований. Vol 9. № 1. 1996.

[3] Топкое место, P. и Д.Б. Мадан. “Оценка опции Используя быстрое преобразование Фурье”. Журнал вычислительных финансов. Vol 2. № 4. 1999.

[4] Chourdakis, K. “Оценка опции Используя дробный БПФ”. Журнал вычислительных финансов. 2005.

[5] Хестон, S. L. “Решение закрытой формы для опций со стохастической энергозависимостью с приложениями к опциям связи и валюты”. Анализ финансовых исследований. Vol 6. № 2. 1993.

Введенный в R2018a