гессиан

Матрица гессиана скалярной функции

Синтаксис

hessian(f,v)

Описание

пример

hessian(f,v) находит матрицу Гессиана скалярной функции f относительно векторного v в Декартовых координатах.

Если вы не задаете v, то hessian(f) находит матрицу Гессиана скалярной функции f относительно вектора созданный из всех символьных переменных найденный в f. Порядок переменных в этом векторе задан symvar.

Примеры

Найдите матрицу гессиана скалярной функции

Найдите матрицу Гессиана функции при помощи hessian. Затем найдите матрицу Гессиана той же функции как якобиан градиента функции.

Найдите матрицу Гессиана этой функции трех переменных:

syms x y z
f = x*y + 2*z*x;
hessian(f,[x,y,z])
ans =
[ 0, 1, 2]
[ 1, 0, 0]
[ 2, 0, 0]

Также вычислите матрицу Гессиана этой функции как якобиан градиента этой функции:

jacobian(gradient(f))
ans =
[ 0, 1, 2]
[ 1, 0, 0]
[ 2, 0, 0]

Входные параметры

свернуть все

Скалярная функция, заданная как символьное выражение или символьная функция.

Вектор, относительно которого вы находите матрицу Гессиана, заданную как символьный вектор. По умолчанию v является вектором, созданным из всех символьных переменных, найденных в f. Порядок переменных в этом векторе задан symvar.

Если v является пустым символьным объектом, таким как sym([]), то hessian возвращает пустой символьный объект.

Больше о

свернуть все

Матрица гессиана

Матрица Гессиана f (x) является квадратной матрицей вторых частных производных f (x).

H(f)=[2fx122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn2]

Смотрите также

| | | | | | |

Представленный в R2011b