exponenta event banner

подвести итог

Сводная статистика распределения байесовской векторной модели авторегрессии (VAR)

Описание

пример

summarize(Mdl) отображает в командной строке табличную сводку коэффициентов байесовской модели VAR (p) Mdlи инновационная ковариационная матрица. Резюме включает в себя средние и стандартные отклонения распределения. Mdl представляет собой.

пример

summarize(Mdl,display) печать сводки с использованием стиля отображения display.

пример

Summary = summarize(Mdl) возвращает сводную статистику распределения Summary.

Примеры

свернуть все

Рассмотрим модель 3-D VAR (4) для инфляции в США (INFL), безработица (UNRATE) и федеральные средства (FEDFUNDS) ставки.

[INFLtUNRATEtFEDFUNDSt]=c+∑j=14Φj[INFLt-jUNRATEt-jFEDFUNDSt-j]+[ε1,tε2,tε3,t].

Для всех t αt - это ряд независимых 3-D нормальных нововведений со средним значением 0 и ковариацией Λ. Предположим, что поведение параметров регулирует предыдущее распределение δ ([Ф1,..., Φ4, с] ′, Λ). Рассмотрите возможность использования регуляризации Миннесоты для получения скудного представления апостериорного распределения коэффициента.

Для каждого поддерживаемого предыдущего предположения создайте соответствующий объект модели Bayesian VAR (4) для трех переменных ответа с помощью bayesvarm. Для каждой модели, поддерживающей эту опцию, укажите все следующие параметры.

  • Имена переменных ответа.

  • Предшествующие коэффициенты самозапаздывания имеют дисперсию 100. Эта установка большой дисперсии позволяет данным влиять на заднюю сторону больше, чем предыдущая.

  • Предшествующие коэффициенты перекрестного запаздывания имеют дисперсию 1. Эта установка малой дисперсии ужесточает коэффициенты перекрестного запаздывания до нуля во время оценки.

  • Предшествующие ковариации коэффициентов распадаются с возрастающим запаздыванием со скоростью 2 (то есть более низкие запаздывания важнее больших запаздываний).

  • Для нормальной сопряженной предшествующей модели предположим, что ковариация инноваций является матрицей 3-D тождественности.

seriesnames = ["INFL" "UNRATE" "FEDFUNDS"];
numseries = numel(seriesnames);
numlags = 4;

DiffusePriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);
ConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate',...
    'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'Decay',2);
SemiConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','semiconjugate',...
    'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2);
NormalPriorMdl = bayesvarm(numseries,numlags,'ModelType','normal',...
    'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2,...
    'Sigma',eye(numseries));

Для каждой модели просмотрите сводку предыдущего распределения.

summarize(DiffusePriorMdl)
             | Mean  Std 
-------------------------
 Constant(1) |   0   Inf 
 Constant(2) |   0   Inf 
 Constant(3) |   0   Inf 
 AR{1}(1,1)  |   0   Inf 
 AR{1}(2,1)  |   0   Inf 
 AR{1}(3,1)  |   0   Inf 
 AR{1}(1,2)  |   0   Inf 
 AR{1}(2,2)  |   0   Inf 
 AR{1}(3,2)  |   0   Inf 
 AR{1}(1,3)  |   0   Inf 
 AR{1}(2,3)  |   0   Inf 
 AR{1}(3,3)  |   0   Inf 
 AR{2}(1,1)  |   0   Inf 
 AR{2}(2,1)  |   0   Inf 
 AR{2}(3,1)  |   0   Inf 
 AR{2}(1,2)  |   0   Inf 
 AR{2}(2,2)  |   0   Inf 
 AR{2}(3,2)  |   0   Inf 
 AR{2}(1,3)  |   0   Inf 
 AR{2}(2,3)  |   0   Inf 
 AR{2}(3,3)  |   0   Inf 
 AR{3}(1,1)  |   0   Inf 
 AR{3}(2,1)  |   0   Inf 
 AR{3}(3,1)  |   0   Inf 
 AR{3}(1,2)  |   0   Inf 
 AR{3}(2,2)  |   0   Inf 
 AR{3}(3,2)  |   0   Inf 
 AR{3}(1,3)  |   0   Inf 
 AR{3}(2,3)  |   0   Inf 
 AR{3}(3,3)  |   0   Inf 
 AR{4}(1,1)  |   0   Inf 
 AR{4}(2,1)  |   0   Inf 
 AR{4}(3,1)  |   0   Inf 
 AR{4}(1,2)  |   0   Inf 
 AR{4}(2,2)  |   0   Inf 
 AR{4}(3,2)  |   0   Inf 
 AR{4}(1,3)  |   0   Inf 
 AR{4}(2,3)  |   0   Inf 
 AR{4}(3,3)  |   0   Inf 
    Innovations Covariance Matrix   
          |  INFL  UNRATE  FEDFUNDS 
------------------------------------
 INFL     | NaN     NaN      NaN    
          | (NaN)   (NaN)    (NaN)  
 UNRATE   | NaN     NaN      NaN    
          | (NaN)   (NaN)    (NaN)  
 FEDFUNDS | NaN     NaN      NaN    
          | (NaN)   (NaN)    (NaN)  

Диффузные предыдущие модели придают одинаковый вес всем модельным коэффициентам. Эта спецификация позволяет данным определять апостериорное распределение.

summarize(ConjugatePriorMdl)
             |  Mean     Std   
-------------------------------
 Constant(1) |  0      33.3333 
 Constant(2) |  0      33.3333 
 Constant(3) |  0      33.3333 
 AR{1}(1,1)  | 0.7500   3.3333 
 AR{1}(2,1)  |  0       3.3333 
 AR{1}(3,1)  |  0       3.3333 
 AR{1}(1,2)  |  0       3.3333 
 AR{1}(2,2)  | 0.7500   3.3333 
 AR{1}(3,2)  |  0       3.3333 
 AR{1}(1,3)  |  0       3.3333 
 AR{1}(2,3)  |  0       3.3333 
 AR{1}(3,3)  | 0.7500   3.3333 
 AR{2}(1,1)  |  0       1.6667 
 AR{2}(2,1)  |  0       1.6667 
 AR{2}(3,1)  |  0       1.6667 
 AR{2}(1,2)  |  0       1.6667 
 AR{2}(2,2)  |  0       1.6667 
 AR{2}(3,2)  |  0       1.6667 
 AR{2}(1,3)  |  0       1.6667 
 AR{2}(2,3)  |  0       1.6667 
 AR{2}(3,3)  |  0       1.6667 
 AR{3}(1,1)  |  0       1.1111 
 AR{3}(2,1)  |  0       1.1111 
 AR{3}(3,1)  |  0       1.1111 
 AR{3}(1,2)  |  0       1.1111 
 AR{3}(2,2)  |  0       1.1111 
 AR{3}(3,2)  |  0       1.1111 
 AR{3}(1,3)  |  0       1.1111 
 AR{3}(2,3)  |  0       1.1111 
 AR{3}(3,3)  |  0       1.1111 
 AR{4}(1,1)  |  0       0.8333 
 AR{4}(2,1)  |  0       0.8333 
 AR{4}(3,1)  |  0       0.8333 
 AR{4}(1,2)  |  0       0.8333 
 AR{4}(2,2)  |  0       0.8333 
 AR{4}(3,2)  |  0       0.8333 
 AR{4}(1,3)  |  0       0.8333 
 AR{4}(2,3)  |  0       0.8333 
 AR{4}(3,3)  |  0       0.8333 
      Innovations Covariance Matrix      
          |   INFL     UNRATE   FEDFUNDS 
-----------------------------------------
 INFL     |  0.1111     0         0      
          | (0.0594)  (0.0398)  (0.0398) 
 UNRATE   |   0        0.1111     0      
          | (0.0398)  (0.0594)  (0.0398) 
 FEDFUNDS |   0         0        0.1111  
          | (0.0398)  (0.0398)  (0.0594) 

При более жесткой предшествующей дисперсии около 0 для больших лагов задняя часть сопряженной модели, вероятно, будет более разреженной, чем задняя часть диффузной модели.

summarize(SemiConjugatePriorMdl)
             |  Mean     Std  
------------------------------
 Constant(1) |  0       100   
 Constant(2) |  0       100   
 Constant(3) |  0       100   
 AR{1}(1,1)  | 0.7500   10    
 AR{1}(2,1)  |  0       1     
 AR{1}(3,1)  |  0       1     
 AR{1}(1,2)  |  0       1     
 AR{1}(2,2)  | 0.7500   10    
 AR{1}(3,2)  |  0       1     
 AR{1}(1,3)  |  0       1     
 AR{1}(2,3)  |  0       1     
 AR{1}(3,3)  | 0.7500   10    
 AR{2}(1,1)  |  0       5     
 AR{2}(2,1)  |  0      0.5000 
 AR{2}(3,1)  |  0      0.5000 
 AR{2}(1,2)  |  0      0.5000 
 AR{2}(2,2)  |  0       5     
 AR{2}(3,2)  |  0      0.5000 
 AR{2}(1,3)  |  0      0.5000 
 AR{2}(2,3)  |  0      0.5000 
 AR{2}(3,3)  |  0       5     
 AR{3}(1,1)  |  0      3.3333 
 AR{3}(2,1)  |  0      0.3333 
 AR{3}(3,1)  |  0      0.3333 
 AR{3}(1,2)  |  0      0.3333 
 AR{3}(2,2)  |  0      3.3333 
 AR{3}(3,2)  |  0      0.3333 
 AR{3}(1,3)  |  0      0.3333 
 AR{3}(2,3)  |  0      0.3333 
 AR{3}(3,3)  |  0      3.3333 
 AR{4}(1,1)  |  0      2.5000 
 AR{4}(2,1)  |  0      0.2500 
 AR{4}(3,1)  |  0      0.2500 
 AR{4}(1,2)  |  0      0.2500 
 AR{4}(2,2)  |  0      2.5000 
 AR{4}(3,2)  |  0      0.2500 
 AR{4}(1,3)  |  0      0.2500 
 AR{4}(2,3)  |  0      0.2500 
 AR{4}(3,3)  |  0      2.5000 
      Innovations Covariance Matrix      
          |   INFL     UNRATE   FEDFUNDS 
-----------------------------------------
 INFL     |  0.1111     0         0      
          | (0.0594)  (0.0398)  (0.0398) 
 UNRATE   |   0        0.1111     0      
          | (0.0398)  (0.0594)  (0.0398) 
 FEDFUNDS |   0         0        0.1111  
          | (0.0398)  (0.0398)  (0.0594) 
summarize(NormalPriorMdl)
             |  Mean     Std  
------------------------------
 Constant(1) |  0       100   
 Constant(2) |  0       100   
 Constant(3) |  0       100   
 AR{1}(1,1)  | 0.7500   10    
 AR{1}(2,1)  |  0       1     
 AR{1}(3,1)  |  0       1     
 AR{1}(1,2)  |  0       1     
 AR{1}(2,2)  | 0.7500   10    
 AR{1}(3,2)  |  0       1     
 AR{1}(1,3)  |  0       1     
 AR{1}(2,3)  |  0       1     
 AR{1}(3,3)  | 0.7500   10    
 AR{2}(1,1)  |  0       5     
 AR{2}(2,1)  |  0      0.5000 
 AR{2}(3,1)  |  0      0.5000 
 AR{2}(1,2)  |  0      0.5000 
 AR{2}(2,2)  |  0       5     
 AR{2}(3,2)  |  0      0.5000 
 AR{2}(1,3)  |  0      0.5000 
 AR{2}(2,3)  |  0      0.5000 
 AR{2}(3,3)  |  0       5     
 AR{3}(1,1)  |  0      3.3333 
 AR{3}(2,1)  |  0      0.3333 
 AR{3}(3,1)  |  0      0.3333 
 AR{3}(1,2)  |  0      0.3333 
 AR{3}(2,2)  |  0      3.3333 
 AR{3}(3,2)  |  0      0.3333 
 AR{3}(1,3)  |  0      0.3333 
 AR{3}(2,3)  |  0      0.3333 
 AR{3}(3,3)  |  0      3.3333 
 AR{4}(1,1)  |  0      2.5000 
 AR{4}(2,1)  |  0      0.2500 
 AR{4}(3,1)  |  0      0.2500 
 AR{4}(1,2)  |  0      0.2500 
 AR{4}(2,2)  |  0      2.5000 
 AR{4}(3,2)  |  0      0.2500 
 AR{4}(1,3)  |  0      0.2500 
 AR{4}(2,3)  |  0      0.2500 
 AR{4}(3,3)  |  0      2.5000 
   Innovations Covariance Matrix   
          | INFL  UNRATE  FEDFUNDS 
-----------------------------------
 INFL     |  1      0        0     
          |  (0)    (0)      (0)   
 UNRATE   |  0      1        0     
          |  (0)    (0)      (0)   
 FEDFUNDS |  0      0        1     
          |  (0)    (0)      (0)   

Полуконъюгатные и нормальные сопряженные предшествующие модели дают более богатую предварительную спецификацию, чем сопряженные и диффузные модели.

Рассмотрим модель 3-D VAR (4) предварительного допущения Inspect Minnesota среди моделей. Предположим, что предыдущее распределение является диффузным.

Загрузить набор макроэкономических данных США. Вычислите уровень инфляции, стабилизируйте уровень безработицы и федеральные фонды и удалите недостающие значения.

load Data_USEconModel
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"];
DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)];

DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)];
DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)];
seriesnames(2:3) = "D" + seriesnames(2:3);
rmDataTable = rmmissing(DataTable);

Создайте диффузную байесовскую модель VAR (4) для трех серий ответов. Укажите имена переменных ответа.

numseries = numel(seriesnames);
numlags = 4;

PriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);

Оцените апостериорное распределение.

PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames});
Bayesian VAR under diffuse priors
Effective Sample Size:          197
Number of equations:            3
Number of estimated Parameters: 39
             |   Mean     Std  
-------------------------------
 Constant(1) |  0.1007  0.0832 
 Constant(2) | -0.0499  0.0450 
 Constant(3) | -0.4221  0.1781 
 AR{1}(1,1)  |  0.1241  0.0762 
 AR{1}(2,1)  | -0.0219  0.0413 
 AR{1}(3,1)  | -0.1586  0.1632 
 AR{1}(1,2)  | -0.4809  0.1536 
 AR{1}(2,2)  |  0.4716  0.0831 
 AR{1}(3,2)  | -1.4368  0.3287 
 AR{1}(1,3)  |  0.1005  0.0390 
 AR{1}(2,3)  |  0.0391  0.0211 
 AR{1}(3,3)  | -0.2905  0.0835 
 AR{2}(1,1)  |  0.3236  0.0868 
 AR{2}(2,1)  |  0.0913  0.0469 
 AR{2}(3,1)  |  0.3403  0.1857 
 AR{2}(1,2)  | -0.0503  0.1647 
 AR{2}(2,2)  |  0.2414  0.0891 
 AR{2}(3,2)  | -0.2968  0.3526 
 AR{2}(1,3)  |  0.0450  0.0413 
 AR{2}(2,3)  |  0.0536  0.0223 
 AR{2}(3,3)  | -0.3117  0.0883 
 AR{3}(1,1)  |  0.4272  0.0860 
 AR{3}(2,1)  | -0.0389  0.0465 
 AR{3}(3,1)  |  0.2848  0.1841 
 AR{3}(1,2)  |  0.2738  0.1620 
 AR{3}(2,2)  |  0.0552  0.0876 
 AR{3}(3,2)  | -0.7401  0.3466 
 AR{3}(1,3)  |  0.0523  0.0428 
 AR{3}(2,3)  |  0.0008  0.0232 
 AR{3}(3,3)  |  0.0028  0.0917 
 AR{4}(1,1)  |  0.0167  0.0901 
 AR{4}(2,1)  |  0.0285  0.0488 
 AR{4}(3,1)  | -0.0690  0.1928 
 AR{4}(1,2)  | -0.1830  0.1520 
 AR{4}(2,2)  | -0.1795  0.0822 
 AR{4}(3,2)  |  0.1494  0.3253 
 AR{4}(1,3)  |  0.0067  0.0395 
 AR{4}(2,3)  |  0.0088  0.0214 
 AR{4}(3,3)  | -0.1372  0.0845 
       Innovations Covariance Matrix       
           |   INFL     DUNRATE  DFEDFUNDS 
-------------------------------------------
 INFL      |  0.3028   -0.0217     0.1579  
           | (0.0321)  (0.0124)   (0.0499) 
 DUNRATE   | -0.0217    0.0887    -0.1435  
           | (0.0124)  (0.0094)   (0.0283) 
 DFEDFUNDS |  0.1579   -0.1435     1.3872  
           | (0.0499)  (0.0283)   (0.1470) 

Резюмируйте апостериорное распределение; сравнивают каждый тип отображения оценки.

summarize(PosteriorMdl); % The default is 'table'.
             |   Mean     Std  
-------------------------------
 Constant(1) |  0.1007  0.0832 
 Constant(2) | -0.0499  0.0450 
 Constant(3) | -0.4221  0.1781 
 AR{1}(1,1)  |  0.1241  0.0762 
 AR{1}(2,1)  | -0.0219  0.0413 
 AR{1}(3,1)  | -0.1586  0.1632 
 AR{1}(1,2)  | -0.4809  0.1536 
 AR{1}(2,2)  |  0.4716  0.0831 
 AR{1}(3,2)  | -1.4368  0.3287 
 AR{1}(1,3)  |  0.1005  0.0390 
 AR{1}(2,3)  |  0.0391  0.0211 
 AR{1}(3,3)  | -0.2905  0.0835 
 AR{2}(1,1)  |  0.3236  0.0868 
 AR{2}(2,1)  |  0.0913  0.0469 
 AR{2}(3,1)  |  0.3403  0.1857 
 AR{2}(1,2)  | -0.0503  0.1647 
 AR{2}(2,2)  |  0.2414  0.0891 
 AR{2}(3,2)  | -0.2968  0.3526 
 AR{2}(1,3)  |  0.0450  0.0413 
 AR{2}(2,3)  |  0.0536  0.0223 
 AR{2}(3,3)  | -0.3117  0.0883 
 AR{3}(1,1)  |  0.4272  0.0860 
 AR{3}(2,1)  | -0.0389  0.0465 
 AR{3}(3,1)  |  0.2848  0.1841 
 AR{3}(1,2)  |  0.2738  0.1620 
 AR{3}(2,2)  |  0.0552  0.0876 
 AR{3}(3,2)  | -0.7401  0.3466 
 AR{3}(1,3)  |  0.0523  0.0428 
 AR{3}(2,3)  |  0.0008  0.0232 
 AR{3}(3,3)  |  0.0028  0.0917 
 AR{4}(1,1)  |  0.0167  0.0901 
 AR{4}(2,1)  |  0.0285  0.0488 
 AR{4}(3,1)  | -0.0690  0.1928 
 AR{4}(1,2)  | -0.1830  0.1520 
 AR{4}(2,2)  | -0.1795  0.0822 
 AR{4}(3,2)  |  0.1494  0.3253 
 AR{4}(1,3)  |  0.0067  0.0395 
 AR{4}(2,3)  |  0.0088  0.0214 
 AR{4}(3,3)  | -0.1372  0.0845 
       Innovations Covariance Matrix       
           |   INFL     DUNRATE  DFEDFUNDS 
-------------------------------------------
 INFL      |  0.3028   -0.0217     0.1579  
           | (0.0321)  (0.0124)   (0.0499) 
 DUNRATE   | -0.0217    0.0887    -0.1435  
           | (0.0124)  (0.0094)   (0.0283) 
 DFEDFUNDS |  0.1579   -0.1435     1.3872  
           | (0.0499)  (0.0283)   (0.1470) 

По умолчанию отображается та же таблица по умолчанию, что и estimate отпечатки.

summarize(PosteriorMdl,'equation');
                                                                                 VAR Equations                                                                                
           | INFL(-1)  DUNRATE(-1)  DFEDFUNDS(-1)  INFL(-2)  DUNRATE(-2)  DFEDFUNDS(-2)  INFL(-3)  DUNRATE(-3)  DFEDFUNDS(-3)  INFL(-4)  DUNRATE(-4)  DFEDFUNDS(-4)  Constant 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 INFL      |  0.1241     -0.4809        0.1005      0.3236     -0.0503        0.0450      0.4272      0.2738        0.0523      0.0167     -0.1830        0.0067      0.1007  
           | (0.0762)    (0.1536)      (0.0390)    (0.0868)    (0.1647)      (0.0413)    (0.0860)    (0.1620)      (0.0428)    (0.0901)    (0.1520)      (0.0395)    (0.0832) 
 DUNRATE   | -0.0219      0.4716        0.0391      0.0913      0.2414        0.0536     -0.0389      0.0552        0.0008      0.0285     -0.1795        0.0088     -0.0499  
           | (0.0413)    (0.0831)      (0.0211)    (0.0469)    (0.0891)      (0.0223)    (0.0465)    (0.0876)      (0.0232)    (0.0488)    (0.0822)      (0.0214)    (0.0450) 
 DFEDFUNDS | -0.1586     -1.4368       -0.2905      0.3403     -0.2968       -0.3117      0.2848     -0.7401        0.0028     -0.0690      0.1494       -0.1372     -0.4221  
           | (0.1632)    (0.3287)      (0.0835)    (0.1857)    (0.3526)      (0.0883)    (0.1841)    (0.3466)      (0.0917)    (0.1928)    (0.3253)      (0.0845)    (0.1781) 
 
       Innovations Covariance Matrix       
           |   INFL     DUNRATE  DFEDFUNDS 
-------------------------------------------
 INFL      |  0.3028   -0.0217     0.1579  
           | (0.0321)  (0.0124)   (0.0499) 
 DUNRATE   | -0.0217    0.0887    -0.1435  
           | (0.0124)  (0.0094)   (0.0283) 
 DFEDFUNDS |  0.1579   -0.1435     1.3872  
           | (0.0499)  (0.0283)   (0.1470) 

В 'equation' отображение, строки соответствуют уравнениям отклика в системе VAR, а столбцы соответствуют задержанным переменным отклика в уравнениях. Элементы в таблице соответствуют задним средствам соответствующего коэффициента; под каждым средним в скобках находится стандартное отклонение заднего.

summarize(PosteriorMdl,'matrix');
          VAR Coefficient Matrix of Lag 1         
           | INFL(-1)  DUNRATE(-1)  DFEDFUNDS(-1) 
--------------------------------------------------
 INFL      |  0.1241     -0.4809        0.1005    
           | (0.0762)    (0.1536)      (0.0390)   
 DUNRATE   | -0.0219      0.4716        0.0391    
           | (0.0413)    (0.0831)      (0.0211)   
 DFEDFUNDS | -0.1586     -1.4368       -0.2905    
           | (0.1632)    (0.3287)      (0.0835)   
 
          VAR Coefficient Matrix of Lag 2         
           | INFL(-2)  DUNRATE(-2)  DFEDFUNDS(-2) 
--------------------------------------------------
 INFL      |  0.3236     -0.0503        0.0450    
           | (0.0868)    (0.1647)      (0.0413)   
 DUNRATE   |  0.0913      0.2414        0.0536    
           | (0.0469)    (0.0891)      (0.0223)   
 DFEDFUNDS |  0.3403     -0.2968       -0.3117    
           | (0.1857)    (0.3526)      (0.0883)   
 
          VAR Coefficient Matrix of Lag 3         
           | INFL(-3)  DUNRATE(-3)  DFEDFUNDS(-3) 
--------------------------------------------------
 INFL      |  0.4272      0.2738        0.0523    
           | (0.0860)    (0.1620)      (0.0428)   
 DUNRATE   | -0.0389      0.0552        0.0008    
           | (0.0465)    (0.0876)      (0.0232)   
 DFEDFUNDS |  0.2848     -0.7401        0.0028    
           | (0.1841)    (0.3466)      (0.0917)   
 
          VAR Coefficient Matrix of Lag 4         
           | INFL(-4)  DUNRATE(-4)  DFEDFUNDS(-4) 
--------------------------------------------------
 INFL      |  0.0167     -0.1830        0.0067    
           | (0.0901)    (0.1520)      (0.0395)   
 DUNRATE   |  0.0285     -0.1795        0.0088    
           | (0.0488)    (0.0822)      (0.0214)   
 DFEDFUNDS | -0.0690      0.1494       -0.1372    
           | (0.1928)    (0.3253)      (0.0845)   
 
     Constant Term    
 INFL      |  0.1007  
           | (0.0832) 
 DUNRATE   | -0.0499  
           |  0.0450  
 DFEDFUNDS | -0.4221  
           |  0.1781  
 
       Innovations Covariance Matrix       
           |   INFL     DUNRATE  DFEDFUNDS 
-------------------------------------------
 INFL      |  0.3028   -0.0217     0.1579  
           | (0.0321)  (0.0124)   (0.0499) 
 DUNRATE   | -0.0217    0.0887    -0.1435  
           | (0.0124)  (0.0094)   (0.0283) 
 DFEDFUNDS |  0.1579   -0.1435     1.3872  
           | (0.0499)  (0.0283)   (0.1470) 

В 'matrix' на дисплее каждая таблица содержит заднее среднее соответствующей матрицы коэффициентов. Под каждым средним в скобках заднее стандартное отклонение.

Рассмотрим модель 3-D VAR (4) предварительного допущения Inspect Minnesota среди моделей. Предположим, что параметры соответствуют предшествующей модели в полуконъюгате.

Загрузить набор макроэкономических данных США. Вычислите уровень инфляции, стабилизируйте уровень безработицы и федеральные фонды и удалите недостающие значения.

load Data_USEconModel
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"];
DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)];

DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)];
DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)];
seriesnames(2:3) = "D" + seriesnames(2:3);
rmDataTable = rmmissing(DataTable);

Создайте предшествующую модель Bayesian VAR (4) для трех серий ответов. Укажите имена переменных ответа и подавьте отображение оценки.

numseries = numel(seriesnames);
numlags = 4;

PriorMdl = bayesvarm(numseries,numlags,'Model','semiconjugate',...
    'SeriesNames',seriesnames);

Оцените апостериорное распределение. Подавление отображения оценки.

PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames},'Display','off');

Поскольку задняя часть полунъюгатной модели является аналитически трудноразрешимой, PosteriorMdl является empiricalbvarm объект модели, в котором хранятся рисунки из образца Гиббса.

Резюмируйте апостериорное распределение; возвращает сводку оценки.

Summary = summarize(PosteriorMdl);
             |   Mean     Std  
-------------------------------
 Constant(1) |  0.1830  0.0718 
 Constant(2) | -0.0808  0.0413 
 Constant(3) | -0.0161  0.1309 
 AR{1}(1,1)  |  0.2246  0.0650 
 AR{1}(2,1)  | -0.0263  0.0340 
 AR{1}(3,1)  | -0.0263  0.0775 
 AR{1}(1,2)  | -0.0837  0.0824 
 AR{1}(2,2)  |  0.3665  0.0740 
 AR{1}(3,2)  | -0.1283  0.0948 
 AR{1}(1,3)  |  0.1362  0.0323 
 AR{1}(2,3)  |  0.0154  0.0198 
 AR{1}(3,3)  | -0.0538  0.0685 
 AR{2}(1,1)  |  0.2518  0.0700 
 AR{2}(2,1)  |  0.0928  0.0352 
 AR{2}(3,1)  |  0.0373  0.0628 
 AR{2}(1,2)  | -0.0097  0.0632 
 AR{2}(2,2)  |  0.1657  0.0709 
 AR{2}(3,2)  | -0.0254  0.0688 
 AR{2}(1,3)  |  0.0329  0.0308 
 AR{2}(2,3)  |  0.0341  0.0199 
 AR{2}(3,3)  | -0.1451  0.0637 
 AR{3}(1,1)  |  0.2895  0.0665 
 AR{3}(2,1)  |  0.0013  0.0332 
 AR{3}(3,1)  | -0.0036  0.0530 
 AR{3}(1,2)  |  0.0322  0.0538 
 AR{3}(2,2)  | -0.0150  0.0667 
 AR{3}(3,2)  | -0.0369  0.0568 
 AR{3}(1,3)  |  0.0368  0.0298 
 AR{3}(2,3)  | -0.0083  0.0194 
 AR{3}(3,3)  |  0.1516  0.0603 
 AR{4}(1,1)  |  0.0452  0.0644 
 AR{4}(2,1)  |  0.0225  0.0325 
 AR{4}(3,1)  | -0.0097  0.0470 
 AR{4}(1,2)  | -0.0218  0.0468 
 AR{4}(2,2)  | -0.1125  0.0611 
 AR{4}(3,2)  |  0.0013  0.0491 
 AR{4}(1,3)  |  0.0180  0.0273 
 AR{4}(2,3)  |  0.0084  0.0179 
 AR{4}(3,3)  | -0.0815  0.0594 
       Innovations Covariance Matrix       
           |   INFL     DUNRATE  DFEDFUNDS 
-------------------------------------------
 INFL      |  0.2983   -0.0219     0.1750  
           | (0.0307)  (0.0121)   (0.0500) 
 DUNRATE   | -0.0219    0.0890    -0.1495  
           | (0.0121)  (0.0093)   (0.0290) 
 DFEDFUNDS |  0.1750   -0.1495     1.4730  
           | (0.0500)  (0.0290)   (0.1514) 
Summary
Summary = struct with fields:
               Description: "3-Dimensional VAR(4) Model"
    NumEstimatedParameters: 39
                     Table: [39x2 table]
                  CoeffMap: [39x1 string]
                 CoeffMean: [39x1 double]
                  CoeffStd: [39x1 double]
                 SigmaMean: [3x3 double]
                  SigmaStd: [3x3 double]

Summary - структурный массив полей, содержащий информацию апостериорной оценки. Например, CoeffMap содержит список имен коэффициентов. Порядок имен соответствует порядку входов и выходов векторов всех коэффициентов. Показ CoeffMap.

Summary.CoeffMap
ans = 39x1 string
    "AR{1}(1,1)"
    "AR{1}(1,2)"
    "AR{1}(1,3)"
    "AR{2}(1,1)"
    "AR{2}(1,2)"
    "AR{2}(1,3)"
    "AR{3}(1,1)"
    "AR{3}(1,2)"
    "AR{3}(1,3)"
    "AR{4}(1,1)"
    "AR{4}(1,2)"
    "AR{4}(1,3)"
    "Constant(1)"
    "AR{1}(2,1)"
    "AR{1}(2,2)"
    "AR{1}(2,3)"
    "AR{2}(2,1)"
    "AR{2}(2,2)"
    "AR{2}(2,3)"
    "AR{3}(2,1)"
    "AR{3}(2,2)"
    "AR{3}(2,3)"
    "AR{4}(2,1)"
    "AR{4}(2,2)"
    "AR{4}(2,3)"
    "Constant(2)"
    "AR{1}(3,1)"
    "AR{1}(3,2)"
    "AR{1}(3,3)"
    "AR{2}(3,1)"
      ⋮

Входные аргументы

свернуть все

Предшествующая или задняя байесовская модель VAR, заданная как объект модели в этой таблице.

Объект моделиОписание
conjugatebvarmЗависимая, матрица-нормаль-обратная-сопряженная модель Вишарта, возвращаемая bayesvarm, conjugatebvarm, или estimate
semiconjugatebvarmНезависимая, нормальная, обратная, полуконъюгатная предыдущая модель Вишарта, возвращенная bayesvarm или semiconjugatebvarm
diffusebvarmДиффузная предыдущая модель, возвращенная bayesvarm или diffusebvarm
empiricalbvarmПредыдущая или задняя модель, характеризующаяся случайными розыгрышами из соответствующих распределений, возвращаемых empiricalbvarm или estimate

Стиль отображения сводки распределения, указанный как значение в этой таблице.

СтоимостьОписание
'off'summarize не печатается в командной строке.
'table'

summarize печатает следующее:

  • Оценочная информация

  • Табличная сводка задних средних коэффициентов и стандартных отклонений; каждая строка соответствует коэффициенту, а каждый столбец соответствует типу оценки

  • Заднее среднее новшеств ковариационной матрицы со стандартными отклонениями в скобках

'equation'

summarize печатает следующее:

  • Оценочная информация

  • Табличная сводка задних средних и стандартных отклонений; каждая строка соответствует переменной ответа в системе, и каждый столбец соответствует коэффициенту в уравнении (например, столбец с меткой Y1(-1) содержит оценки коэффициента запаздывания 1 первой переменной отклика в каждом уравнении)

  • Заднее среднее новшеств ковариационной матрицы со стандартными отклонениями в скобках.

'matrix'

summarize печатает следующее:

  • Оценочная информация

  • Отдельные табличные отображения задних средних и стандартных отклонений (в скобках) для каждого параметра в модели Φ1,..., Фр, с, δ, Β и

Типы данных: char | string

Выходные аргументы

свернуть все

Сводная статистика распределения, возвращенная в виде структурного массива, содержащего следующие поля:

ОбластьОписаниеТип данных
DescriptionОписание моделистроковый скаляр
NumEstimatedParametersКоличество коэффициентовчисловой скаляр
TableТаблица средств распределения коэффициентов и стандартных отклонений; каждая строка соответствует коэффициенту, а каждый столбец - статистикестол
CoeffMapНазвания коэффициентовстроковый вектор
CoeffMeanСредство распределения коэффициентов числовой вектор, строки соответствуют CoeffMap
CoeffStdСтандартные отклонения распределения коэффициентовчисловой вектор, строки соответствуют CoeffMap
SigmaMeanИнновационная ковариационная матрица среднего распределениячисловая матрица, строки и столбцы соответствуют уравнениям ответа
SigmaStdИнновационная матрица стандартного отклонения ковариационного распределениячисловая матрица, строки и столбцы соответствуют уравнениям ответа

Подробнее

свернуть все

Модель авторегрессии байесовского вектора (VAR)

Байесовская модель VAR рассматривает все коэффициенты и инновационную ковариационную матрицу как случайные величины в m-мерной стационарной модели VARX (p). Модель имеет одну из трех форм, описанных в этой таблице.

МодельУравнение
VAR (p) редуцированной формы в нотации разностного уравнения

yt = Φ1yt − 1 +... + Фpyt p + c + δt + Βxt + αt.

Многомерная регрессия

yt = Ztλ + αt.

Регрессия матрицы

yt=Λ′zt′+εt.

Для каждого времени t = 1,...,T:

  • yt - m-мерный наблюдаемый вектор отклика, где m = numseries.

  • Φ1,...,Φp - матрицы коэффициентов m-by-m AR лагов 1-p, где p =numlags.

  • c - вектор m-by-1 констант модели, если IncludeConstant является true.

  • δ - вектор m-на-1 коэффициентов линейного тренда времени, если IncludeTrend является true.

  • Β - матрица коэффициентов регрессии вектора r-by-1 наблюдаемых экзогенных предикторов xt, где r = NumPredictors. Все переменные предиктора появляются в каждом уравнении.

  • zt=[yt−1′yt−2′⋯yt−p′1txt ], который является вектором 1-by- (mp + r + 2), а Zt является диагональной матрицей m-by-m (mp + r + 2)

    [zt0z0z0zzt0z  0z0z0zzt],

    где 0z - 1-по- (мп + r + 2) вектор нулей.

  • Λ=[Φ1Φ2⋯ΦpcδΒ] ′, которая является случайной матрицей коэффициентов (mp + r + 2) -by-m, а m (mp + r + 2) -by-1 вектором λ = vec (Λ).

  • δ t - вектор m-на-1 случайных, последовательно некоррелированных, многомерных нормальных нововведений с нулевым вектором для среднего и матрицей m-на-м для ковариации. Это предположение подразумевает, что вероятность данных

    (Λ,Σ'y, x) = ∏t=1Tf (yt; Λ, zt),

    где f - m-мерная многомерная нормальная плотность со средним значением ztΛ и ковариацией

Прежде, чем рассмотреть данные, Вы налагаете совместное предшествующее предположение распределения на (Λ,Σ), которым управляет распределение π (Λ,Σ). В байесовском анализе распределение параметров обновляется информацией о параметрах, полученных из правдоподобия данных. В результате получается совместное заднее распределение λ (Λ, Λ 'Y, X, Y0), где:

  • Y представляет собой матрицу T-на-m, содержащую весь ответный ряд {yt}, t = 1,...,T.

  • X представляет собой матрицу T-на-m, содержащую весь экзогенный ряд {xt}, t = 1,...,T.

  • Y0 является p-by-m матрицей предварительных данных, используемых для инициализации модели VAR для оценки.

См. также

Функции

Объекты

Представлен в R2020a