В этом примере показано, как проверить нулевую гипотезу об отсутствии коинтеграционных отношений между сериями ответов, составляющими многомерную модель.
Груз Data_Canada в рабочую область MATLAB ®. Набор данных содержит терминологическую структуру канадских процентных ставок [137]. Извлеките ряды краткосрочных, среднесрочных и долгосрочных процентных ставок.
load Data_Canada Y = Data(:,3:end); % Multivariate response series
Постройте график серии ответов.
figure plot(dates,Y,'LineWidth',2) xlabel 'Year'; ylabel 'Percent'; names = series(3:end); legend(names,'location','NW') title '{\bf Canadian Interest Rates, 1954-1994}'; axis tight grid on

Сюжет показывает доказательства коинтеграции между тремя сериями, которые движутся вместе со среднереверсирующимся спредом.
Для проверки на коинтеграцию вычислите оба (t1) и (t2) Статистика Дикки-Фуллера. egcitest сравнивает статистику теста с табличными значениями критических значений Энгла-Грейнджера.
[h,pValue,stat,cValue] = egcitest(Y,'test',{'t1','t2'})
h = 1x2 logical array
0 1
pValue = 1×2
0.0526 0.0202
stat = 1×2
-3.9321 -25.4538
cValue = 1×2
-3.9563 -22.1153
Не удается отбросить нулевое значение отсутствия коинтеграции, но едва, с p-значением, лишь немного превышающим уровень значимости по умолчанию 5%, и статистическим значением, лишь немного превышающим критическое значение левого хвоста. Тест z отклоняет нулевое значение отсутствия коинтеграции.
Тест регрессирует Y(:,1) на Y(:,2:end) и (по умолчанию) перехват c0. Остаточный ряд:
[Y(:,1) Y(:,2:end)]*beta - c0 = Y(:,1) - Y(:,2:end)*b - c0.
Пятый выходной аргумент egcitest содержит, среди прочих регрессионных статистических данных, коэффициенты регрессии c0 и b.
Изучите коэффициенты регрессии для изучения гипотетического вектора совместной интеграции beta = [1; -b].
[~,~,~,~,reg] = egcitest(Y,'test','t2'); c0 = reg.coeff(1); b = reg.coeff(2:3); beta = [1;-b]; h = gca; COrd = h.ColorOrder; h.NextPlot = 'ReplaceChildren'; h.ColorOrder = circshift(COrd,3);

plot(dates,Y*beta-c0,'LineWidth',2); title '{\bf Cointegrating Relation}'; axis tight; legend off; grid on;

Комбинация выглядит относительно неподвижной, как подтверждает тест.