Настройки оптимизации для оценки модели regARIMA

Опции оптимизации

estimate максимизирует функцию логарифмической правдоподобности, используя fmincon из Optimization Toolbox™. fmincon имеет много опций оптимизации, таких как выбор алгоритма оптимизации и допуск нарушения ограничений. Выберите опции оптимизации с помощью optimoptions.

estimate использует fmincon опции оптимизации по умолчанию, за этими исключениями. Для получения дополнительной информации см. fmincon и optimoptions в Optimization Toolbox.

Свойства опцийОписаниеНастройки оценки
AlgorithmАлгоритм минимизации отрицательной функции логарифмической правдоподобности'sqp'
DisplayLevel of display для прогресса оптимизации'off'
DiagnosticsОтображение диагностической информации о функции, которая будет минимизирована'off'
ConstraintToleranceДопуск прекращения при нарушениях ограничений1e-7

Если вы хотите использовать опции оптимизации, которые отличаются от опций по умолчанию, задайте свое использование optimoptions.

Например, предположим, что вы хотите estimate для отображения диагностики оптимизации. Лучшая практика состоит в том, чтобы задать аргумент пары "имя-значение" 'Display','diagnostics' в estimate. Также можно направить оптимизатор на отображение диагностики оптимизации.

Задайте регрессионую модель с ошибками AR (1) (Mdl) и моделировать данные из него.

Mdl0 = regARIMA('AR',0.5,'Intercept',0,'Variance',1);
rng(1); % For reproducibility
y = simulate(Mdl0,25);

Mdl не имеет регрессионного компонента. По умолчанию fmincon не отображает диагностику оптимизации. Использование optimoptions установить его для отображения диагностики оптимизации и установить другое fmincon свойства к настройкам по умолчанию estimate перечисленных в предыдущей таблице.

options = optimoptions(@fmincon,'Diagnostics','on','Algorithm',...
    'sqp','Display','off','ConstraintTolerance',1e-7)
options = 
  fmincon options:

   Options used by current Algorithm ('sqp'):
   (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
                    Algorithm: 'sqp'
          ConstraintTolerance: 1.0000e-07
                      Display: 'off'

   Default properties:
               CheckGradients: 0
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
       MaxFunctionEvaluations: '100*numberOfVariables'
                MaxIterations: 400
               ObjectiveLimit: -1.0000e+20
          OptimalityTolerance: 1.0000e-06
                    OutputFcn: []
                      PlotFcn: []
                 ScaleProblem: 0
    SpecifyConstraintGradient: 0
     SpecifyObjectiveGradient: 0
                StepTolerance: 1.0000e-06
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0

   Show options not used by current Algorithm ('sqp')

% @fmincon is the function handle for fmincon

Заданные опции появляются под Set by user: курс. Свойства под Default: заголовок - это другие опции, которые можно задать.

Подгонка Mdl на y использование новых опций оптимизации.

Mdl = regARIMA(1,0,0);
EstMdl = estimate(Mdl,y,'Options',options);
____________________________________________________________
   Diagnostic Information

Number of variables: 3

Functions 
Objective:                            @(X)nLogLike(X,YData,XData,E,U,Mdl,AR.Lags,MA.Lags,maxPQ,T,isDistributionT,userSpecifiedU0,trapValue)
Gradient:                             finite-differencing
Hessian:                              finite-differencing (or Quasi-Newton)
Nonlinear constraints:                @(x)internal.econ.arimaNonLinearConstraints(x,LagsAR,LagsSAR,LagsMA,LagsSMA,tolerance)
Nonlinear constraints gradient:       finite-differencing

Constraints
Number of nonlinear inequality constraints: 1
Number of nonlinear equality constraints:   0
 
Number of linear inequality constraints:    0
Number of linear equality constraints:      0
Number of lower bound constraints:          3
Number of upper bound constraints:          3

Algorithm selected
   sqp


____________________________________________________________
   End diagnostic information
 
    ARMA(1,0) Error Model (Gaussian Distribution):
 
                  Value      StandardError    TStatistic     PValue  
                 ________    _____________    __________    _________

    Intercept    -0.12097       0.44747        -0.27034        0.7869
    AR{1}         0.46386       0.15781          2.9393     0.0032895
    Variance       1.2308       0.47275          2.6035     0.0092266

Примечание

  • estimate численно максимизирует функцию логарифмической правдоподобности, потенциально используя ограничения равенство, неравенство и нижние и верхние ограничения. Если вы задаете Algorithm ко всему, кроме sqp, убедитесь, что алгоритм поддерживает аналогичные ограничения, такие как interior-point. Для примера, trust-region-reflective не поддерживает ограничения неравенства.

  • estimate устанавливает уровень ограничений ConstraintTolerance поэтому ограничения не нарушаются. Оценка с активным ограничением имеет ненадежные стандартные ошибки, потому что дисперсионно-ковариационная оценка принимает, что функция правдоподобия является локально квадратичной вокруг максимальной оценки правдоподобия.

Ограничения регрессионных моделей с ошибками ARIMA

Программа применяет эти ограничения при оценке регрессионой модели с ошибками ARIMA:

  • Стабильность несезонных и сезонных AR оператора полиномов

  • Обратимость несезонного и сезонного оператора MA полиномов

  • Инновационное отклонение строго больше нуля

  • Степени свободы строго больше двух для t инновационного распределения

См. также

| | |

Похожие темы