ellipticPi

Полные и неполные эллиптические интегралы третьего рода

Описание

Примеры

Вычисление неполных эллиптических интегралов третьего рода

Вычислите неполные эллиптические интегралы третьего рода для этих чисел. Поскольку эти числа не являются символическими объектами, вы получаете результаты с плавающей точкой.

s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
ellipticPi(-1, 0, 1),  ellipticPi(2, pi/6, 2)]
s =
    0.5877    1.2850         0    0.7507

Вычислите неполные эллиптические интегралы третьего рода для тех же чисел, преобразованных в символические объекты. Для большинства символических (точных) чисел ellipticPi возвращает неразрешенные символические вызовы.

s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3), pi/3, 1/2),...
ellipticPi(-1, sym(0), 1),  ellipticPi(2, pi/6, sym(2))]
s =
[ ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]

Здесь, ellipticE представляет неполный эллиптический интеграл второго рода.

Использовать vpa чтобы аппроксимировать этот результат с числами с плавающей запятой:

vpa(s, 10)
ans =
[ 0.5876852228, 1.285032276, 0, 0.7507322117]

Дифференцирование неполных эллиптических интегралов третьего рода

Дифференцируйте эти выражения с участием полного эллиптического интеграла третьего рода:

syms n m
diff(ellipticPi(n, m), n)
diff(ellipticPi(n, m), m)
ans =
ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -...
(ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1))
 
ans =
- ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m - n)*(m - 1))

Здесь, ellipticK и ellipticE представляют полные эллиптические интегралы первого и второго видов.

Вычисление интегралов для матричного входа

Функции ellipticPi для скаляра и матрицы. Когда один входной параметр является матрицей, ellipticPi расширяет скалярный аргумент до матрицы того же размера со всеми ее элементами, равными скаляру.

ellipticPi(sym(0), sym([1/3 1; 1/2 0]))
ans =
[ ellipticK(1/3),  Inf]
[ ellipticK(1/2), pi/2]

Здесь, ellipticK представляет полный эллиптический интеграл первого рода.

Входные параметры

свернуть все

Вход, заданный как число, вектор, матрица или массив или символьное число, переменная, массив, функция или выражение.

Вход, заданный как число, вектор, матрица или массив или символьное число, переменная, массив, функция или выражение.

Вход, заданный как число, вектор, матрица или массив или символьное число, переменная, массив, функция или выражение.

Подробнее о

свернуть все

Неполный эллиптический интеграл третьего рода

Неполный эллиптический интеграл третьего рода определяется следующим образом:

Π(n;φ|m)=0φ1(1nsin2θ)1msin2θdθ

Обратите внимание, что в некоторых определениях вместо m параметра используется эллиптический модуль k или модульный угол α. Они связаны как m = k2 = sin2α.

Полный эллиптический интеграл третьего рода

Полный эллиптический интеграл третьего рода определяется следующим образом:

Π(n,m)=Π(n;π2|m)=0π/21(1nsin2θ)1msin2θdθ

Обратите внимание, что в некоторых определениях вместо m параметра используется эллиптический модуль k или модульный угол α. Они связаны как m = k2 = sin2α.

Совет

  • ellipticPi возвращает результаты с плавающей точкой для числовых аргументов, которые не являются символьными объектами.

  • Для большинства символических (точных) чисел ellipticPi возвращает неразрешенные символические вызовы. Можно аппроксимировать такие результаты с помощью чисел с плавающей запятой vpa.

  • Все некалярные аргументы должны иметь одинаковый размер. Если один или два входных параметров не нескаляра, то ellipticPi расширяет скаляры в векторы или матрицы того же размера, что и некалярные аргументы, при этом все элементы равны соответствующему скаляру.

  • ellipticPi(n, pi/2, m) = ellipticPi(n, m).

Ссылки

[1] Милн-Томсон, Л. М. «Эллиптические интегралы». Руководство по математическим функциям с формулами, графиками и математическими таблицами. (М. Абрамовиц и И. А. Штегун, эд.). Нью-Йорк: Дувр, 1972.

Введенный в R2013a
Для просмотра документации необходимо авторизоваться на сайте