Сводная статистика распределения модели байесовской векторной авторегрессии (VAR)
summarize(
отображает в командной строке табличные сводные данные коэффициентов модели Bayesian VAR (p)
MdlMdl
)и ковариационная матрица инноваций. Сводные данные включают средства и стандартные отклонения распределения
Mdl
представляет собой.
Рассмотрим 3-D модель VAR (4) для инфляции в США (INFL
), безработица (UNRATE
), и федеральные фонды (FEDFUNDS
) ставки.
Для всех , - серия независимых 3-D нормальных инноваций со средним значением 0 и ковариацией . Предположим, что предшествующее распределение управляет поведением параметров. Рассмотрите использование регуляризации Миннесоты, чтобы получить скупое представление апостериорного распределения коэффициента.
Для каждого поддерживаемого предварительного предположения создайте соответствующий объект модели Bayesian VAR (4) для трех переменных отклика при помощи bayesvarm
. Для каждой модели, которая поддерживает опцию, задайте все следующие.
Имена переменных отклика.
Предыдущие коэффициенты автозадания имеют отклонение 100. Эта установка больших дисперсий позволяет данным влиять на апостериор больше, чем на предыдущий.
Предыдущие коэффициенты перекрестной задержки имеют отклонение 1. Эта настройка малых дисперсий затягивает коэффициенты перекрестной задержки до нуля во время оценки.
Ковариации предшествующего коэффициента распадаются с увеличением задержки со скоростью 2 (то есть более низкие лаги важнее больших лагов).
Для нормальной сопряженной предшествующей модели примите, что инновационная ковариация является 3-D единичной матрицей.
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; numseries = numel(seriesnames); numlags = 4; DiffusePriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames); ConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'Decay',2); SemiConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','semiconjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2); NormalPriorMdl = bayesvarm(numseries,numlags,'ModelType','normal',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2,... 'Sigma',eye(numseries));
Для каждой модели отобразите сводные данные предыдущего распределения.
summarize(DiffusePriorMdl)
| Mean Std ------------------------- Constant(1) | 0 Inf Constant(2) | 0 Inf Constant(3) | 0 Inf AR{1}(1,1) | 0 Inf AR{1}(2,1) | 0 Inf AR{1}(3,1) | 0 Inf AR{1}(1,2) | 0 Inf AR{1}(2,2) | 0 Inf AR{1}(3,2) | 0 Inf AR{1}(1,3) | 0 Inf AR{1}(2,3) | 0 Inf AR{1}(3,3) | 0 Inf AR{2}(1,1) | 0 Inf AR{2}(2,1) | 0 Inf AR{2}(3,1) | 0 Inf AR{2}(1,2) | 0 Inf AR{2}(2,2) | 0 Inf AR{2}(3,2) | 0 Inf AR{2}(1,3) | 0 Inf AR{2}(2,3) | 0 Inf AR{2}(3,3) | 0 Inf AR{3}(1,1) | 0 Inf AR{3}(2,1) | 0 Inf AR{3}(3,1) | 0 Inf AR{3}(1,2) | 0 Inf AR{3}(2,2) | 0 Inf AR{3}(3,2) | 0 Inf AR{3}(1,3) | 0 Inf AR{3}(2,3) | 0 Inf AR{3}(3,3) | 0 Inf AR{4}(1,1) | 0 Inf AR{4}(2,1) | 0 Inf AR{4}(3,1) | 0 Inf AR{4}(1,2) | 0 Inf AR{4}(2,2) | 0 Inf AR{4}(3,2) | 0 Inf AR{4}(1,3) | 0 Inf AR{4}(2,3) | 0 Inf AR{4}(3,3) | 0 Inf Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ------------------------------------ INFL | NaN NaN NaN | (NaN) (NaN) (NaN) UNRATE | NaN NaN NaN | (NaN) (NaN) (NaN) FEDFUNDS | NaN NaN NaN | (NaN) (NaN) (NaN)
Диффузные предыдущие модели ставят равный вес на все коэффициенты модели. Эта спецификация позволяет данным определять апостериорное распределение.
summarize(ConjugatePriorMdl)
| Mean Std ------------------------------- Constant(1) | 0 33.3333 Constant(2) | 0 33.3333 Constant(3) | 0 33.3333 AR{1}(1,1) | 0.7500 3.3333 AR{1}(2,1) | 0 3.3333 AR{1}(3,1) | 0 3.3333 AR{1}(1,2) | 0 3.3333 AR{1}(2,2) | 0.7500 3.3333 AR{1}(3,2) | 0 3.3333 AR{1}(1,3) | 0 3.3333 AR{1}(2,3) | 0 3.3333 AR{1}(3,3) | 0.7500 3.3333 AR{2}(1,1) | 0 1.6667 AR{2}(2,1) | 0 1.6667 AR{2}(3,1) | 0 1.6667 AR{2}(1,2) | 0 1.6667 AR{2}(2,2) | 0 1.6667 AR{2}(3,2) | 0 1.6667 AR{2}(1,3) | 0 1.6667 AR{2}(2,3) | 0 1.6667 AR{2}(3,3) | 0 1.6667 AR{3}(1,1) | 0 1.1111 AR{3}(2,1) | 0 1.1111 AR{3}(3,1) | 0 1.1111 AR{3}(1,2) | 0 1.1111 AR{3}(2,2) | 0 1.1111 AR{3}(3,2) | 0 1.1111 AR{3}(1,3) | 0 1.1111 AR{3}(2,3) | 0 1.1111 AR{3}(3,3) | 0 1.1111 AR{4}(1,1) | 0 0.8333 AR{4}(2,1) | 0 0.8333 AR{4}(3,1) | 0 0.8333 AR{4}(1,2) | 0 0.8333 AR{4}(2,2) | 0 0.8333 AR{4}(3,2) | 0 0.8333 AR{4}(1,3) | 0 0.8333 AR{4}(2,3) | 0 0.8333 AR{4}(3,3) | 0 0.8333 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------------- INFL | 0.1111 0 0 | (0.0594) (0.0398) (0.0398) UNRATE | 0 0.1111 0 | (0.0398) (0.0594) (0.0398) FEDFUNDS | 0 0 0.1111 | (0.0398) (0.0398) (0.0594)
С более плотной предшествующим отклонением около 0 для больших лагов, апостериор сопряженной модели, вероятно, будет более разреженным, чем апостериор диффузной модели.
summarize(SemiConjugatePriorMdl)
| Mean Std ------------------------------ Constant(1) | 0 100 Constant(2) | 0 100 Constant(3) | 0 100 AR{1}(1,1) | 0.7500 10 AR{1}(2,1) | 0 1 AR{1}(3,1) | 0 1 AR{1}(1,2) | 0 1 AR{1}(2,2) | 0.7500 10 AR{1}(3,2) | 0 1 AR{1}(1,3) | 0 1 AR{1}(2,3) | 0 1 AR{1}(3,3) | 0.7500 10 AR{2}(1,1) | 0 5 AR{2}(2,1) | 0 0.5000 AR{2}(3,1) | 0 0.5000 AR{2}(1,2) | 0 0.5000 AR{2}(2,2) | 0 5 AR{2}(3,2) | 0 0.5000 AR{2}(1,3) | 0 0.5000 AR{2}(2,3) | 0 0.5000 AR{2}(3,3) | 0 5 AR{3}(1,1) | 0 3.3333 AR{3}(2,1) | 0 0.3333 AR{3}(3,1) | 0 0.3333 AR{3}(1,2) | 0 0.3333 AR{3}(2,2) | 0 3.3333 AR{3}(3,2) | 0 0.3333 AR{3}(1,3) | 0 0.3333 AR{3}(2,3) | 0 0.3333 AR{3}(3,3) | 0 3.3333 AR{4}(1,1) | 0 2.5000 AR{4}(2,1) | 0 0.2500 AR{4}(3,1) | 0 0.2500 AR{4}(1,2) | 0 0.2500 AR{4}(2,2) | 0 2.5000 AR{4}(3,2) | 0 0.2500 AR{4}(1,3) | 0 0.2500 AR{4}(2,3) | 0 0.2500 AR{4}(3,3) | 0 2.5000 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------------- INFL | 0.1111 0 0 | (0.0594) (0.0398) (0.0398) UNRATE | 0 0.1111 0 | (0.0398) (0.0594) (0.0398) FEDFUNDS | 0 0 0.1111 | (0.0398) (0.0398) (0.0594)
summarize(NormalPriorMdl)
| Mean Std ------------------------------ Constant(1) | 0 100 Constant(2) | 0 100 Constant(3) | 0 100 AR{1}(1,1) | 0.7500 10 AR{1}(2,1) | 0 1 AR{1}(3,1) | 0 1 AR{1}(1,2) | 0 1 AR{1}(2,2) | 0.7500 10 AR{1}(3,2) | 0 1 AR{1}(1,3) | 0 1 AR{1}(2,3) | 0 1 AR{1}(3,3) | 0.7500 10 AR{2}(1,1) | 0 5 AR{2}(2,1) | 0 0.5000 AR{2}(3,1) | 0 0.5000 AR{2}(1,2) | 0 0.5000 AR{2}(2,2) | 0 5 AR{2}(3,2) | 0 0.5000 AR{2}(1,3) | 0 0.5000 AR{2}(2,3) | 0 0.5000 AR{2}(3,3) | 0 5 AR{3}(1,1) | 0 3.3333 AR{3}(2,1) | 0 0.3333 AR{3}(3,1) | 0 0.3333 AR{3}(1,2) | 0 0.3333 AR{3}(2,2) | 0 3.3333 AR{3}(3,2) | 0 0.3333 AR{3}(1,3) | 0 0.3333 AR{3}(2,3) | 0 0.3333 AR{3}(3,3) | 0 3.3333 AR{4}(1,1) | 0 2.5000 AR{4}(2,1) | 0 0.2500 AR{4}(3,1) | 0 0.2500 AR{4}(1,2) | 0 0.2500 AR{4}(2,2) | 0 2.5000 AR{4}(3,2) | 0 0.2500 AR{4}(1,3) | 0 0.2500 AR{4}(2,3) | 0 0.2500 AR{4}(3,3) | 0 2.5000 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------- INFL | 1 0 0 | (0) (0) (0) UNRATE | 0 1 0 | (0) (0) (0) FEDFUNDS | 0 0 1 | (0) (0) (0)
Полунъюгатные и нормальные сопряженные предшествующие модели дают более богатую предшествующую спецификацию, чем сопряженные и диффузные модели.
Рассмотрим 3-D модель VAR (4) Inspect Minnesota Private Assumptions среди моделей. Примите, что предшествующее распределение является диффузным.
Загрузите набор макроэкономических данных США. Рассчитать уровень инфляции, стабилизировать ставки по безработице и федеральным фондам и удалить отсутствующие значения.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)]; DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)]; DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTable = rmmissing(DataTable);
Создайте диффузную модель Bayesian VAR (4) для трех рядов откликов. Задайте имена переменных отклика.
numseries = numel(seriesnames);
numlags = 4;
PriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);
Оцените апостериорное распределение.
PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames});
Bayesian VAR under diffuse priors Effective Sample Size: 197 Number of equations: 3 Number of estimated Parameters: 39 | Mean Std ------------------------------- Constant(1) | 0.1007 0.0832 Constant(2) | -0.0499 0.0450 Constant(3) | -0.4221 0.1781 AR{1}(1,1) | 0.1241 0.0762 AR{1}(2,1) | -0.0219 0.0413 AR{1}(3,1) | -0.1586 0.1632 AR{1}(1,2) | -0.4809 0.1536 AR{1}(2,2) | 0.4716 0.0831 AR{1}(3,2) | -1.4368 0.3287 AR{1}(1,3) | 0.1005 0.0390 AR{1}(2,3) | 0.0391 0.0211 AR{1}(3,3) | -0.2905 0.0835 AR{2}(1,1) | 0.3236 0.0868 AR{2}(2,1) | 0.0913 0.0469 AR{2}(3,1) | 0.3403 0.1857 AR{2}(1,2) | -0.0503 0.1647 AR{2}(2,2) | 0.2414 0.0891 AR{2}(3,2) | -0.2968 0.3526 AR{2}(1,3) | 0.0450 0.0413 AR{2}(2,3) | 0.0536 0.0223 AR{2}(3,3) | -0.3117 0.0883 AR{3}(1,1) | 0.4272 0.0860 AR{3}(2,1) | -0.0389 0.0465 AR{3}(3,1) | 0.2848 0.1841 AR{3}(1,2) | 0.2738 0.1620 AR{3}(2,2) | 0.0552 0.0876 AR{3}(3,2) | -0.7401 0.3466 AR{3}(1,3) | 0.0523 0.0428 AR{3}(2,3) | 0.0008 0.0232 AR{3}(3,3) | 0.0028 0.0917 AR{4}(1,1) | 0.0167 0.0901 AR{4}(2,1) | 0.0285 0.0488 AR{4}(3,1) | -0.0690 0.1928 AR{4}(1,2) | -0.1830 0.1520 AR{4}(2,2) | -0.1795 0.0822 AR{4}(3,2) | 0.1494 0.3253 AR{4}(1,3) | 0.0067 0.0395 AR{4}(2,3) | 0.0088 0.0214 AR{4}(3,3) | -0.1372 0.0845 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
Результирующие апостериорные распределения; сравните каждый тип отображения оценки.
summarize(PosteriorMdl); % The default is 'table'.
| Mean Std ------------------------------- Constant(1) | 0.1007 0.0832 Constant(2) | -0.0499 0.0450 Constant(3) | -0.4221 0.1781 AR{1}(1,1) | 0.1241 0.0762 AR{1}(2,1) | -0.0219 0.0413 AR{1}(3,1) | -0.1586 0.1632 AR{1}(1,2) | -0.4809 0.1536 AR{1}(2,2) | 0.4716 0.0831 AR{1}(3,2) | -1.4368 0.3287 AR{1}(1,3) | 0.1005 0.0390 AR{1}(2,3) | 0.0391 0.0211 AR{1}(3,3) | -0.2905 0.0835 AR{2}(1,1) | 0.3236 0.0868 AR{2}(2,1) | 0.0913 0.0469 AR{2}(3,1) | 0.3403 0.1857 AR{2}(1,2) | -0.0503 0.1647 AR{2}(2,2) | 0.2414 0.0891 AR{2}(3,2) | -0.2968 0.3526 AR{2}(1,3) | 0.0450 0.0413 AR{2}(2,3) | 0.0536 0.0223 AR{2}(3,3) | -0.3117 0.0883 AR{3}(1,1) | 0.4272 0.0860 AR{3}(2,1) | -0.0389 0.0465 AR{3}(3,1) | 0.2848 0.1841 AR{3}(1,2) | 0.2738 0.1620 AR{3}(2,2) | 0.0552 0.0876 AR{3}(3,2) | -0.7401 0.3466 AR{3}(1,3) | 0.0523 0.0428 AR{3}(2,3) | 0.0008 0.0232 AR{3}(3,3) | 0.0028 0.0917 AR{4}(1,1) | 0.0167 0.0901 AR{4}(2,1) | 0.0285 0.0488 AR{4}(3,1) | -0.0690 0.1928 AR{4}(1,2) | -0.1830 0.1520 AR{4}(2,2) | -0.1795 0.0822 AR{4}(3,2) | 0.1494 0.3253 AR{4}(1,3) | 0.0067 0.0395 AR{4}(2,3) | 0.0088 0.0214 AR{4}(3,3) | -0.1372 0.0845 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
По умолчанию это то же табличное отображение по умолчанию, что и estimate
отпечатки.
summarize(PosteriorMdl,'equation');
VAR Equations | INFL(-1) DUNRATE(-1) DFEDFUNDS(-1) INFL(-2) DUNRATE(-2) DFEDFUNDS(-2) INFL(-3) DUNRATE(-3) DFEDFUNDS(-3) INFL(-4) DUNRATE(-4) DFEDFUNDS(-4) Constant ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ INFL | 0.1241 -0.4809 0.1005 0.3236 -0.0503 0.0450 0.4272 0.2738 0.0523 0.0167 -0.1830 0.0067 0.1007 | (0.0762) (0.1536) (0.0390) (0.0868) (0.1647) (0.0413) (0.0860) (0.1620) (0.0428) (0.0901) (0.1520) (0.0395) (0.0832) DUNRATE | -0.0219 0.4716 0.0391 0.0913 0.2414 0.0536 -0.0389 0.0552 0.0008 0.0285 -0.1795 0.0088 -0.0499 | (0.0413) (0.0831) (0.0211) (0.0469) (0.0891) (0.0223) (0.0465) (0.0876) (0.0232) (0.0488) (0.0822) (0.0214) (0.0450) DFEDFUNDS | -0.1586 -1.4368 -0.2905 0.3403 -0.2968 -0.3117 0.2848 -0.7401 0.0028 -0.0690 0.1494 -0.1372 -0.4221 | (0.1632) (0.3287) (0.0835) (0.1857) (0.3526) (0.0883) (0.1841) (0.3466) (0.0917) (0.1928) (0.3253) (0.0845) (0.1781) Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
В 'equation'
отображение, строки соответствуют уравнениям отклика в системе VAR, а столбцы соответствуют переменным отклика с отставанием в уравнениях. Элементы таблицы соответствуют апостериорным средствам соответствующего коэффициента; под каждым средним значением в круглых скобках находится стандартное отклонение апостериорной функции.
summarize(PosteriorMdl,'matrix');
VAR Coefficient Matrix of Lag 1 | INFL(-1) DUNRATE(-1) DFEDFUNDS(-1) -------------------------------------------------- INFL | 0.1241 -0.4809 0.1005 | (0.0762) (0.1536) (0.0390) DUNRATE | -0.0219 0.4716 0.0391 | (0.0413) (0.0831) (0.0211) DFEDFUNDS | -0.1586 -1.4368 -0.2905 | (0.1632) (0.3287) (0.0835) VAR Coefficient Matrix of Lag 2 | INFL(-2) DUNRATE(-2) DFEDFUNDS(-2) -------------------------------------------------- INFL | 0.3236 -0.0503 0.0450 | (0.0868) (0.1647) (0.0413) DUNRATE | 0.0913 0.2414 0.0536 | (0.0469) (0.0891) (0.0223) DFEDFUNDS | 0.3403 -0.2968 -0.3117 | (0.1857) (0.3526) (0.0883) VAR Coefficient Matrix of Lag 3 | INFL(-3) DUNRATE(-3) DFEDFUNDS(-3) -------------------------------------------------- INFL | 0.4272 0.2738 0.0523 | (0.0860) (0.1620) (0.0428) DUNRATE | -0.0389 0.0552 0.0008 | (0.0465) (0.0876) (0.0232) DFEDFUNDS | 0.2848 -0.7401 0.0028 | (0.1841) (0.3466) (0.0917) VAR Coefficient Matrix of Lag 4 | INFL(-4) DUNRATE(-4) DFEDFUNDS(-4) -------------------------------------------------- INFL | 0.0167 -0.1830 0.0067 | (0.0901) (0.1520) (0.0395) DUNRATE | 0.0285 -0.1795 0.0088 | (0.0488) (0.0822) (0.0214) DFEDFUNDS | -0.0690 0.1494 -0.1372 | (0.1928) (0.3253) (0.0845) Constant Term INFL | 0.1007 | (0.0832) DUNRATE | -0.0499 | 0.0450 DFEDFUNDS | -0.4221 | 0.1781 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
В 'matrix'
отображение, каждая таблица содержит апостериорное среднее соответствующей матрицы коэффициентов. Под каждым средним значением в круглых скобках определяется апостериорное стандартное отклонение.
Рассмотрим 3-D модель VAR (4) Inspect Minnesota Private Assumptions среди моделей. Предположим, что параметры следуют полусредней предыдущей модели.
Загрузите набор макроэкономических данных США. Рассчитать уровень инфляции, стабилизировать ставки по безработице и федеральным фондам и удалить отсутствующие значения.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)]; DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)]; DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTable = rmmissing(DataTable);
Создайте полуконъюгатную предшествующую модель Bayesian VAR (4) для трех рядов откликов. Задайте имена переменных отклика и подавьте отображение оценки.
numseries = numel(seriesnames); numlags = 4; PriorMdl = bayesvarm(numseries,numlags,'Model','semiconjugate',... 'SeriesNames',seriesnames);
Оцените апостериорное распределение. Подавить отображение оценки.
PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames},'Display','off');
Потому что апостериор полунъюгатной модели аналитически неразрешим, PosteriorMdl
является empiricalbvarm
объект модели, сохраняющий рисунки из семплера Гиббса.
Результирующие апостериорные распределения; возвращает сводные данные оценок.
Summary = summarize(PosteriorMdl);
| Mean Std ------------------------------- Constant(1) | 0.1830 0.0718 Constant(2) | -0.0808 0.0413 Constant(3) | -0.0161 0.1309 AR{1}(1,1) | 0.2246 0.0650 AR{1}(2,1) | -0.0263 0.0340 AR{1}(3,1) | -0.0263 0.0775 AR{1}(1,2) | -0.0837 0.0824 AR{1}(2,2) | 0.3665 0.0740 AR{1}(3,2) | -0.1283 0.0948 AR{1}(1,3) | 0.1362 0.0323 AR{1}(2,3) | 0.0154 0.0198 AR{1}(3,3) | -0.0538 0.0685 AR{2}(1,1) | 0.2518 0.0700 AR{2}(2,1) | 0.0928 0.0352 AR{2}(3,1) | 0.0373 0.0628 AR{2}(1,2) | -0.0097 0.0632 AR{2}(2,2) | 0.1657 0.0709 AR{2}(3,2) | -0.0254 0.0688 AR{2}(1,3) | 0.0329 0.0308 AR{2}(2,3) | 0.0341 0.0199 AR{2}(3,3) | -0.1451 0.0637 AR{3}(1,1) | 0.2895 0.0665 AR{3}(2,1) | 0.0013 0.0332 AR{3}(3,1) | -0.0036 0.0530 AR{3}(1,2) | 0.0322 0.0538 AR{3}(2,2) | -0.0150 0.0667 AR{3}(3,2) | -0.0369 0.0568 AR{3}(1,3) | 0.0368 0.0298 AR{3}(2,3) | -0.0083 0.0194 AR{3}(3,3) | 0.1516 0.0603 AR{4}(1,1) | 0.0452 0.0644 AR{4}(2,1) | 0.0225 0.0325 AR{4}(3,1) | -0.0097 0.0470 AR{4}(1,2) | -0.0218 0.0468 AR{4}(2,2) | -0.1125 0.0611 AR{4}(3,2) | 0.0013 0.0491 AR{4}(1,3) | 0.0180 0.0273 AR{4}(2,3) | 0.0084 0.0179 AR{4}(3,3) | -0.0815 0.0594 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.2983 -0.0219 0.1750 | (0.0307) (0.0121) (0.0500) DUNRATE | -0.0219 0.0890 -0.1495 | (0.0121) (0.0093) (0.0290) DFEDFUNDS | 0.1750 -0.1495 1.4730 | (0.0500) (0.0290) (0.1514)
Summary
Summary = struct with fields:
Description: "3-Dimensional VAR(4) Model"
NumEstimatedParameters: 39
Table: [39x2 table]
CoeffMap: [39x1 string]
CoeffMean: [39x1 double]
CoeffStd: [39x1 double]
SigmaMean: [3x3 double]
SigmaStd: [3x3 double]
Сводные данные являются массивом структур полей, содержащей информацию апостериорной оценки. Для примера, CoeffMap
поле содержит список имен коэффициентов. Порядок имен соответствует порядку всех входных и выходных входов вектора. Отобразите CoeffMap
.
Summary.CoeffMap
ans = 39x1 string
"AR{1}(1,1)"
"AR{1}(1,2)"
"AR{1}(1,3)"
"AR{2}(1,1)"
"AR{2}(1,2)"
"AR{2}(1,3)"
"AR{3}(1,1)"
"AR{3}(1,2)"
"AR{3}(1,3)"
"AR{4}(1,1)"
"AR{4}(1,2)"
"AR{4}(1,3)"
"Constant(1)"
"AR{1}(2,1)"
"AR{1}(2,2)"
"AR{1}(2,3)"
"AR{2}(2,1)"
"AR{2}(2,2)"
"AR{2}(2,3)"
"AR{3}(2,1)"
"AR{3}(2,2)"
"AR{3}(2,3)"
"AR{4}(2,1)"
"AR{4}(2,2)"
"AR{4}(2,3)"
"Constant(2)"
"AR{1}(3,1)"
"AR{1}(3,2)"
"AR{1}(3,3)"
"AR{2}(3,1)"
⋮
Mdl
- предыдущая или апостериорная модель Bayesian VARconjugatebvarm
объект модели | semiconjugatebvarm
объект модели | diffusebvarm
объект модели | normalbvarm
объект модели | empiricalbvarm
объект моделиПредыдущая или апостериорная модель Bayesian VAR, заданная как объект модели в этой таблице.
Объект модели | Описание |
---|---|
conjugatebvarm | Зависимая, матричная-нормальная-обратная-Wishart сопряженная модель, возвращенная bayesvarm , conjugatebvarm , или estimate |
semiconjugatebvarm | Независимая, нормальная-обратная-Wishart полусредняя предыдущая модель, возвращенная bayesvarm или semiconjugatebvarm |
diffusebvarm | Диффузная предыдущая модель, возвращенная bayesvarm или diffusebvarm |
empiricalbvarm | Предыдущая или апостериорная модель, характеризующаяся случайными рисунками из соответствующих распределений, возвращаемыми empiricalbvarm или estimate |
display
- Стиль отображения сводки распределения'table'
(по умолчанию) | 'off'
| 'equation'
| 'matrix'
Стиль отображения сводных данных распределения, заданный как значение в этой таблице.
Значение | Описание |
---|---|
'off' | summarize не печатается в командной строке. |
'table' |
|
'equation' |
|
'matrix' |
|
Типы данных: char
| string
Summary
- Сводная статистика распределенияСводная статистика распределения, возвращенная как массив структур, содержащий следующие поля:
Область | Описание | Тип данных |
---|---|---|
Description | Описание модели | строковый скаляр |
NumEstimatedParameters | Количество коэффициентов | числовой скаляр |
Table | Таблица средств распределения коэффициентов и стандартных отклонений; каждая строка соответствует коэффициенту, и каждый столбец соответствует статистической единице | таблица |
CoeffMap | Имена коэффициентов | строковый вектор |
CoeffMean | Средство распределения коэффициентов | числовой вектор, строки соответствуют CoeffMap |
CoeffStd | Стандартные отклонения распределения коэффициентов | числовой вектор, строки соответствуют CoeffMap |
SigmaMean | Инновации ковариации среднее распределение матрицы | числовая матрица, строки и столбцы соответствуют уравнениям отклика |
SigmaStd | Инновации ковариационного распределения стандартной матрицы отклонений | числовая матрица, строки и столбцы соответствуют уравнениям отклика |
A Bayesian VAR model обрабатывает все коэффициенты и ковариационную матрицу инноваций как случайные переменные в m -мерной, стационарной модели VARX (p). Модель имеет одну из трех форм, описанных в этой таблице.
Модель | Уравнение |
---|---|
VAR (p) редуцированной формы в обозначении разностного уравнения |
|
Многомерная регрессия |
|
Матричная регрессия |
|
Для каждого временного t = 1,..., T:
yt - m -мерный вектор наблюдаемой отклика, где m = numseries
.
Φ1,..., - p являются m -by m матрицами коэффициентов AR лагов с 1 по p, где p = numlags
.
c - вектор m -by-1 констант модели, если IncludeConstant
является true
.
δ - вектор m -by-1 коэффициентов линейного временного тренда, если IncludeTrend
является true
.
Β - m -by - r матрица коэффициентов регрессии вектора r -by - 1 наблюдаемых экзогенных предикторов x t, где r = NumPredictors
. Все переменные предиктора появляются в каждом уравнении.
который является вектором 1-by- (mp + r + 2), и Z t является m -by- m (mp + r + 2) блочной диагональной матрицей
где 0 z является 1-бай- (mp + r + 2) вектором нулей.
, которая является (mp + r + 2) -by m случайной матрицей коэффициентов, и m (mp + r + 2) -by-1 вектор λ = vec (
εt является m-на-1 вектором случайных, последовательно некоррелированных, многомерных нормальных инноваций с нулевым вектором для среднего и m -by- m матрицы Это предположение подразумевает, что вероятность данных является
где f m - размерная многомерная нормальная плотность со средним <reservedrangesplaceholder3> <reservedrangesplaceholder2> Λ и ковариацией Σ, оценен в <reservedrangesplaceholder1> <reservedrangesplaceholder0>.
Прежде, чем рассмотреть данные, Вы налагаете joint prior distribution предположение на (Λ,Σ), которым управляет распределение π (Λ,Σ). В байесовском анализе распределение параметров обновляется информацией о параметрах, полученных из вероятности данных. Результатом является joint posterior distribution π (Λ,Σ|<reservedrangesplaceholder2>,<reservedrangesplaceholder1>,<reservedrangesplaceholder0>0), где:
Y - T матрица m, содержащая весь ряд ответов {y t}, t = 1,..., T.
X - T матрица m, содержащая весь экзогенный ряд {x t}, t = 1,..., T.
Y 0 является p -by - m матрицей предварительных образцов данных, используемых для инициализации модели VAR для оценки.
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.