simByEuler

Симулируйте пути диффузионной выборки перехода Мертона с помощью приближения Эйлера

Описание

пример

[Paths,Times,Z,N] = simByEuler(MDL,NPeriods) моделирует NTrials выборочные пути NVars коррелированные переменные состояния, управляемые NBrowns Брауновские источники риска и NJumps комплексные пуассоновские процессы, представляющие прибытие важных событий по всему NPeriods последовательные периоды наблюдения. Симуляция аппроксимирует процесс диффузии перехода Мертона в непрерывном времени с помощью подхода Эйлера.

пример

[Paths,Times,Z,N] = simByEuler(___,Name,Value) задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе.

Примеры

свернуть все

Создайте merton объект.

AssetPrice = 80;
            Return = 0.03;
            Sigma = 0.16;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 2;
            
            mertonObj = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,...
                'startstat',AssetPrice)
mertonObj = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
       JumpMean: 0.02
        JumpVol: 0.08

Использование simByEuler для симуляции NTrials выборочные пути NVars коррелированные переменные состояния, управляемые NBrowns Брауновские источники риска и NJumps комплексные пуассоновские процессы, представляющие прибытие важных событий по всему NPeriods последовательные периоды наблюдения. Функция simByEuler аппроксимирует процесс диффузии перехода Мертона в непрерывном времени с помощью подхода Эйлера.

NPeriods = 2;
[Paths,Times,Z,N] = simByEuler(mertonObj,NPeriods)
Paths = 3×1

   80.0000
  266.5590
  306.2600

Times = 3×1

     0
     1
     2

Z = 2×1

    1.8339
   -2.2588

N = 2×1

     1
     2

Paths является 3-by- 1 матрица. Единственный столбец - это путь к моделируемой AssetPrice. Область выхода Z - серия матриц, используемых для генерации вектора броуновского движения. Область выхода N - серия матриц, используемых для генерации векторов перехода.

Входные параметры

свернуть все

Модель Стохастического дифференциального уравнения, заданная как merton объект. Можно создать merton объект, использующий merton.

Типы данных: object

Количество периодов симуляции, заданное как положительное скалярное целое число. Значение NPeriods определяет количество строк моделируемого выходного ряда.

Типы данных: double

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Пример: [Paths,Times,Z,N] = simByEuler(merton,NPeriods,'DeltaTimes',dt)

Моделируемые испытания (пути расчета) NPeriods каждый из наблюдений, заданный как разделенная разделенными запятой парами, состоящая из 'NTrials' и положительное скалярное целое число.

Типы данных: double

Положительные шаги времени между наблюдениями, заданные как разделенная разделенными запятой парами, состоящая из 'DeltaTimes' и скаляр или NPeriods-by- 1 Вектор-столбец.

DeltaTimes представляет собой знакомые dt, найденные в стохастических дифференциальных уравнениях, и определяет время, в которое сообщаются моделируемые пути переменных выходного состояния.

Типы данных: double

Количество промежуточных временных шагов в каждом временном шаге dt (задается как DeltaTimes), заданная как разделенная разделенными запятой парами, состоящая из 'NSteps' и положительное скалярное целое число.

The simByEuler функциональные разделы каждый временной шаг dt в NSteps Подынтервалы длины dt/ NSteps, и уточняет симуляцию путем оценки вектора моделируемого состояния в NSteps − 1 промежуточные точки. Хотя simByEuler не сообщает вектор выходного состояния в этих промежуточных точках, уточнение улучшает точность, позволяя симуляции более точно аппроксимировать базовый процесс непрерывного времени.

Типы данных: double

Флаг для использования антитетической дискретизации, чтобы сгенерировать Гауссовы случайные вариации, которые управляют брауновским вектором движения (процессы Винера), заданным как разделенная запятыми пара, состоящая из 'Antithetic' и скаляр числовой или логический 1 (true) или 0 (false).

Когда вы задаете true, simByEuler выполняет выборку таким образом, чтобы все первичные и антитетические пути моделировались и сохранялись в последовательных совпадающих парах:

  • Нечетные испытания (1,3,5,...) соответствуют первичным Гауссовым путям.

  • Даже испытания (2,4,6,...) являются совпадающими антитетическими путями каждой пары, выведенными путем отрицания Гауссовских рисунков соответствующего первичного (нечетного) исследования.

Примечание

Если вы задаете входной процесс шума (см Z), simByEuler игнорирует значение Antithetic.

Типы данных: logical

Прямая спецификация зависимого процесса случайного шума для генерации вектора Броуна (процесс Винера), который управляет симуляцией, заданная как разделенная разделенными запятой парами, состоящая из 'Z' и функцию или как (NPeriods ⨉ NSteps)-by- NBrowns-by- NTrials трехмерный массив зависимых случайных вариаций.

Примечание

Если вы задаете Z как функция, она должна вернуть NBrowns-by- 1 Вектор-столбец, и вы должны вызвать его с двумя входами:

  • Реальное скалярное время наблюдения t

  • Система координат NVars-by- 1 вектор состояния Xt

Типы данных: double | function

Зависимый процесс случайного подсчета для генерации количества переходов, заданный как разделенная разделенными запятой парами, состоящая из 'N' и функцию или (NPeriodsNSteps) -by- NJumps-by- NTrials трехмерный массив зависимых случайных вариаций.

Если вы задаете функцию, N необходимо вернуть NJumps-by- 1 Вектор-столбец, и вы должны вызвать его с двумя входами: реальное скалярное время наблюдения t за которым следует NVars-by- 1 вектор состояния Xt.

Типы данных: double | function

Флаг, который указывает, как выходной массив Paths сохранен и возвращен, заданный как разделенная разделенными запятой парами, состоящая из 'StorePaths' и скаляр числовой или логический 1 (true) или 0 (false).

Если StorePaths является true (значение по умолчанию) или не задано, simByEuler возвращает Paths как трехмерный массив временных рядов.

Если StorePaths является false (логический 0), simByEuler возвращает Paths как пустая матрица.

Типы данных: logical

Последовательность процессов в конце периода или корректировок вектора состояния, заданная как разделенная разделенными запятой парами, состоящая из 'Processes' и функция или массив ячеек функций вида

Xt=P(t,Xt)

The simByEuler функция запускает функции обработки в каждый момент интерполяции. Функции должны принять текущее t времени интерполяции, а вектор текущего состояния Xt и вернуть вектор состояния, который может быть корректировкой входа состояния.

Если вы задаете несколько функций обработки, simByEuler вызывает функции в том порядке, в котором они появляются в массиве ячеек. Можно использовать этот аргумент, чтобы задать граничные условия, предотвратить отрицательные цены, накопить статистику, построить графики и многое другое.

Система на конец периода Processes аргумент позволяет вам завершить указанное испытание раньше. В конце каждого временного шага simByEuler проверяет векторное Xt состояния на все NaN состояние. Таким образом, чтобы сигнализировать о раннем прекращении данного исследования, все элементы векторной Xt состояния должны быть NaN. Этот тест позволяет вам задать Processes функция, чтобы сигнализировать о раннем прекращении испытания и предлагает значительную эффективность преимущества в некоторых ситуациях (для примера, ценообразования снижающихся и выходящих барьерных вариантов).

Типы данных: cell | function

Выходные аргументы

свернуть все

Моделируемые пути коррелированных переменных состояния, возвращенные как (NPeriods + 1)-by- NVars-by- NTrials трехмерный массив временных рядов.

Для данного испытания каждая строка Paths - транспонирование вектора состояния, X t в момент t времени. Когда StorePaths установлено в false, simByEuler возвращает Paths как пустая матрица.

Время наблюдения, сопоставленное с моделируемыми путями, возвращается как (NPeriods + 1)-by- 1 Вектор-столбец. Каждый элемент Times связана с соответствующей строкой Paths.

Зависимые случайные вариации, используемые для генерации броуновского вектора движения (процессы Винера), которые управляют симуляцией, возвращаемой как (NPeriods ⨉ NSteps)-by- NBrowns-by- NTrials трехмерный массив timeseries.

Зависимые случайные изменения для генерации вектора процесса подсчета переходов, возвращенные как (NPeriods ⨉ NSteps)-by- NJumps-by- NTrials трехмерный массив timeseries.

Подробнее о

свернуть все

Антитетический отбор проб

Методы симуляции позволяют вам задать популярный метод уменьшения отклонения, называемый антитетической выборкой.

Этот метод пытается заменить одну последовательность случайных наблюдений на другую, которая имеет то же ожидаемое значение, но меньшее отклонение. В типичной симуляции Монте-Карло каждый путь выборки является независимым и представляет собой независимое исследование. Однако антитетическая выборка генерирует пути дискретизации в парах. Первый путь пары упоминается как основной путь, а второй как антитетический путь. Любая заданная пара является независимой другими парами, но два пути внутри каждой пары сильно коррелируются. Антитетическая литература часто рекомендует усреднение дисконтированных выплат каждой пары, фактически вдвое сокращая количество испытаний Монте-Карло.

Этот метод пытается уменьшить отклонение путем индуцирования отрицательной зависимости между парными входными выборками, в идеале приводя к отрицательной зависимости между парными выходными выборками. Чем больше степень отрицательной зависимости, тем более эффективен антитетический отбор проб.

Алгоритмы

Эта функция описывает любой векторный SDE следующей формы:

dXt=B(t,Xt)Xtdt+D(t,Xt)V(t,xt)dWt+Y(t,Xt,Nt)XtdNt

Здесь:

  • Xt является NVars-by- 1 вектор состояний переменных процесса.

  • B (t, X t) является NVars-by- NVars матрица обобщенных ожидаемых мгновенных показателей возврата.

  • D(t,Xt) является NVars-by- NVars диагональная матрица, в которой каждый элемент вдоль основной диагонали является соответствующим элементом вектора состояний.

  • V(t,Xt) является NVars-by- NVars матрица мгновенных уровней волатильности.

  • dW t является NBrowns-by- 1 Брауновский вектор движения.

  • Y(t,Xt,Nt) является NVars-by- NJumps матричная функция размера перехода.

  • dN t является NJumps-by- 1 вектор процесса подсчета.

simByEuler моделирует NTrials выборочные пути NVars коррелированные переменные состояния, управляемые NBrowns Брауновские источники риска NPeriods последовательные периоды наблюдения, используя подход Эйлера для аппроксимации стохастических процессов в непрерывном времени.

Этот механизм симуляции обеспечивает приближение в дискретном времени базового обобщенного процесса в непрерывном времени. Симуляция определяется непосредственно из стохастического дифференциального уравнения движения. Таким образом, процесс в дискретном времени приближается к процессу в истинном непрерывном времени только так DeltaTimes приближается к нулю.

Ссылки

[1] Дильстра, Гризельда и Фредди Дельбаен. «Конвергенция дискретизированных стохастических (процентных) процессов с терминами дрейфа стохастиков». Примененные стохастические модели и анализ данных. 14, № 1, 1998, стр. 77-84.

[2] Хайам, Десмонд и Сюэронг Мао. «Сходимость Симуляций Монте-Карло с использованием процесса Mean-Reverting Квадратного корня». Журнал вычислительных финансов 8, № 3, (2005): 35-61.

[3] Лорд, Роджер, Реммерт Коеккоек и Дик Ван Дейк. Сравнение смещенных схем симуляции для стохастических моделей волатильности. Количественное финансирование 10, № 2 (февраль 2010): 177-94.

Введенный в R2020a