pcbStack

Одно канал или антенна PCB мультиканала

Описание

pcbStack объект является одно каналом или антенной печатной платы (PCB) мультиканала. pcbStack объект может использоваться

  • Создать одноуровневый, многоуровневый металл или металлически-диэлектрические антенны подложки

  • Создать произвольное число подачи и vias в антенне

  • Создать антенну PCB с элементами каталога антенны Antenna Toolbox™

  • Преобразовывать элементы антенной решетки в стек PCB

Примечание

Чтобы сгенерировать файл Гербера, слой подложки требуется. Используйте Substrate свойство создать этот слой в антенне PCB. Для получения дополнительной информации смотрите Преобразование Стека

Создание

Описание

pcbant = pcbStack создает заполненный воздухом PCB одно канала с двумя металлическими слоями.

пример

pcbant = pcbStack(Name,Value) Свойства наборов с помощью пар "имя-значение". Например, pcbStack('FeedDiameter', 2.000e-04) создает антенну PCB с диаметром канала 2.000e-04 метров. Можно задать несколько пар "имя-значение". Заключите каждое имя свойства в кавычки, создает антенну PCB, с дополнительными свойствами, заданными одним или несколькими аргументами пары "имя-значение". Свойства, не заданные, сохраняют свои значения по умолчанию.

пример

pcbant = pcbStack(ant) преобразует любую 2D или 2.5-D антенну из каталога антенны в антенну PCB для дальнейшего моделирования и анализа. Можно также использовать объекты антенной решетки от элементов каталога антенной решетки их, преобразуют его в антенны PCB.

Свойства

развернуть все

Имя антенны PCB, заданной вектор символов.

Пример: 'Name','PCBPatch'

Типы данных: char | string

Детали версии антенны PCB проектируют в виде вектора символов.

Пример: 'Revision','2.0'

Типы данных: char | string

Форма Платы ПК в виде объекта. Форма может быть прямоугольником или многоугольником.

Пример: 'BoardShape',antenna.Polygon

Толщина Платы ПК в виде положительной скалярной величины.

Пример: 'BoardThickness',0.02000

Типы данных: double

Металлические и диэлектрические слои, заданные массив ячеек металлических форм слоя и диэлектрика. Можно задать одну металлическую форму или один диэлектрик на слой начиная с верхнего слоя и продолжающий вниз.

Типы данных: cell

Питайте местоположения для антенны PCB в Декартовых координатах в виде N -by-3 или N-by-4 массив. Можно поместить канал в плате или в ребре платы. Массивы переводят в следующее:

  • N -by-3 – [x, y, Layer]

  • N-by-4 – [x, y, SigLayer, GndLayer]

Пример: 'FeedLocations',[-0.0187 0 1 2]

Типы данных: double

Центральный диаметр контакта коннектора канала в виде положительной скалярной величины в метрах.

Пример: 'FeedDiameter',2.000e-04

Типы данных: double

Электрические короткие места для антенны в Декартовых координатах в виде вектора действительных чисел размера M-by-4 массив. Массивы переводят в следующее:

  • M-by-4 – [x, y, SigLayer, GndLayer]

Пример: 'ViaLocations',[0 -0.025 1 2]

Типы данных: double

Электрический закорачивающий диаметр контакта между металлическими слоями, заданными положительная скалярная величина в метрах.

Пример: 'ViaDiameter',1.0e-3

Типы данных: double

Напряжение величины, примененное при подаче в виде положительной скалярной величины в вольтах.

Пример: 'FeedVoltage',2

Типы данных: double

Модель для аппроксимации канала и через в виде одного из следующего:

  • 'strip' – Прямоугольное приближение полосы к каналу или через цилиндр. Это приближение является самым простым и приводит к маленькой mesh.

  • 'square' – 4-стороннее приближение многогранника к каналу или через цилиндр.

  • 'hexagon' – 6-стороннее приближение многогранника к каналу или через цилиндр.

  • 'octagon' – 8-стороннее приближение многогранника к каналу или через цилиндр.

Пример: 'FeedViaModel','octagon'

Типы данных: char | string

Фаза Excitation в каждом канале в виде вектора действительных чисел в градусах.

Пример: 'FeedPhase',2

Типы данных: double

Тип металла, используемого в качестве проводника в виде металлического материального объекта. Можно выбрать любой металл из MetalCatalog или задайте металл по вашему выбору. Для получения дополнительной информации смотрите metal. Для получения дополнительной информации о металлическом запутывающем проводнике смотрите Запутывающий.

Пример: m = metal('Copper'); 'Conductor',m

Пример: m = metal('Copper'); ant.Conductor = m

Смешанные элементы, добавленные к антенне, питаются в виде смешанного указателя на объект элемента. Для получения дополнительной информации смотрите lumpedElement.

Пример: 'Load',lumpedelement. lumpedelement указатель на объект для загрузки, созданной с помощью lumpedElement.

Пример: pcbant.Load = lumpedElement('Impedance',75)

Угол наклона антенны в виде скаляра или вектора с каждым модулем элемента в градусах. Для получения дополнительной информации смотрите, Вращают Антенны и Массивы.

Пример: 'Tilt',90

Пример: ant.Tilt = 90

Пример: 'Tilt',[90 90], 'TiltAxis',[0 1 0;0 1 1] наклоняет антенну в 90 градусах об этих двух осях, заданных векторами.

Примечание

wireStack объект антенны только принимает, что точечный метод изменяет свои свойства.

Типы данных: double

Наклонная ось антенны в виде:

  • Трехэлементный вектор из Декартовых координат в метрах. В этом случае каждая координата в векторе запускается в начале координат и простирается вдоль заданных точек на X-, Y-и осях Z.

  • Две точки в пространстве, каждый заданный как трехэлементные векторы из Декартовых координат. В этом случае антенна вращается вокруг линии, соединяющей эти две точки в пространстве.

  • Вход строки, описывающий простые вращения вокруг одной из основных осей, 'X', 'Y' или 'Z'.

Для получения дополнительной информации смотрите, Вращают Антенны и Массивы.

Пример: 'TiltAxis',[0 1 0]

Пример: 'TiltAxis',[0 0 0;0 1 0]

Пример: ant.TiltAxis = 'Z'

Примечание

wireStack объект антенны только принимает, что точечный метод изменяет свои свойства.

Типы данных: double

Функции объекта

showОтобразите антенну или структуру массива; отобразите форму как заполненную закрашенную фигуру
arrayСоздайте массив объектов стека PCB
axialRatioКоэффициент эллиптичности антенны
beamwidthШирина луча антенны
chargeРаспределение заряда на металлической или диэлектрической антенне или поверхности массивов
currentРаспределение тока на металлической или диэлектрической антенне или поверхности массивов
efficiencyКПД излучения антенны
EHfieldsЭлектрические и магнитные поля антенн; Встроенные электрические и магнитные поля антенного элемента в массивах
impedanceВходной импеданс антенны; отсканируйте импеданс массива
infoОтобразите информацию об антенне или массиве
layoutОтобразите массив или размещение стека PCB
meshПоймайте в сети свойства металлической или диэлектрической антенны или структуры массива
meshconfigИзмените режим mesh структуры антенны
patternДиаграмма направленности и фаза антенны или массива; Встроенный шаблон антенного элемента в массиве
patternAzimuthШаблон азимута антенны или массива
patternElevationШаблон вертикального изменения антенны или массива
returnLossВозвратите потерю антенны; отсканируйте возвращают потерю массива
sparametersВычислите S-параметр для объектов антенной и антенной решетки
vswrНапряжение постоянное отношение волны антенны
plotПостройте контур формы

Примеры

свернуть все

Параметры Setup.

vp  = physconst('lightspeed');
f   = 850e6;
lambda = vp./f;

Создайте плоский диполь с емкостной загрузкой в концах.

L = 0.15;
W = 1.5*L;
stripL = L;
gapx = .015;
gapy = .01;
r1 = antenna.Rectangle('Center',[0,0],'Length',L,'Width',W,'Center',[lambda*0.35,0]);
r2 = antenna.Rectangle('Center',[0,0],'Length',L,'Width',W,'Center',[-lambda*0.35,0]);
r3 = antenna.Rectangle('Length',0.5*lambda,'Width',0.02*lambda,'NumPoints',2);
s = r1 + r2 + r3;
figure
show(s)

Figure contains an axes object. The axes object contains 2 objects of type patch. This object represents PEC.

Присвойте форму излучателя pcbStack и внесите изменения в форму платы и свойства диаметра канала.

boardShape = antenna.Rectangle('Length',0.6,'Width',0.3);
p = pcbStack;
p.BoardShape = boardShape;
p.Layers = {s};
p.FeedDiameter = .02*lambda/2;
p.FeedLocations = [0 0 1];
figure
show(p)

Figure contains an axes object. The axes object with title pcbStack antenna element contains 3 objects of type patch, surface. These objects represent PEC, feed.

Анализируйте импеданс антенны. Эффект загрузки конца должен привести к серийному резонансу, который будет продвинут ниже в полосе.

figure
impedance(p,linspace(200e6,1e9,51))

Figure contains an axes object. The axes object with title Impedance contains 2 objects of type line. These objects represent Resistance, Reactance.

Создайте антенну стека pcb с 2-миллиметровой диэлектрической толщиной в излучателе и воздухе ниже его. Отобразите структуру.

p = pcbStack;
d1 = dielectric('FR4');
d1.Thickness = 2e-3;
d2 = dielectric('Air');
d2.Thickness = 8e-3;
p.Layers = {p.Layers{1},d1,d2,p.Layers{2}};
p.FeedLocations(3:4) = [1 4];
show(p)

Figure contains an axes object. The axes object with title pcbStack antenna element contains 9 objects of type patch, surface. These objects represent PEC, feed, FR4.

Создайте антенну стека PCB из поддержанного галстука-бабочки отражателя.

b = design(bowtieRounded,1e9);
b.Tilt = 90
b = 
  bowtieRounded with properties:

        Length: 0.0959
    FlareAngle: 90
     Conductor: [1x1 metal]
          Tilt: 90
      TiltAxis: [1 0 0]
          Load: [1x1 lumpedElement]

b.TiltAxis = [0 1 0];
r = reflector('Exciter',b);
p = pcbStack(r);

Постройте шаблон направленности антенны на уровне 1 ГГц.

pattern(p,1e9);

Figure contains an axes object and other objects of type uicontrol. The axes object contains 5 objects of type patch, surface.

Создайте компланарную инвертированную антенну F.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3,  ...
                  'GroundPlaneWidth', 100e-3);

Используйте эту антенну, чтобы создать pcbStack объект.

p = pcbStack(fco);

Создайте круговую микрополосковую закрашенную фигуру.

p = patchMicrostripCircular;
d = dielectric;
d.EpsilonR = 4.4;
p.Radius = .0256;
p.Height = 1.6e-3;
p.Substrate = d;
p.GroundPlaneLength = 3*.0256;
p.GroundPlaneWidth = 3*.0256;
p.FeedOffset = [.0116 0];

Создайте круговую закрашенную фигуру микрополосковой линии PCB с помощью pcbStack.

pb = pcbStack(p);
pb.FeedDiameter = 1.27e-3;
pb.ViaLocations = [0 pb.FeedLocations(1)/1.1 1 3];
pb.ViaDiameter = pb.FeedDiameter;
figure
show(pb)

C = SMA_Jack_Cinch;
O = PCBServices.MayhewWriter;
O.DefaultViaDiam = pb.ViaDiameter;
O.Filename = 'Microstrip circular patch-9a';
Am = PCBWriter(pb,O,C);
gerberWrite(Am)

Изображения с помощью Labs Мэйхью 3-D Средство просмотра.

Создайте компланарную инвертированную-F антенну.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3,  ...
                  'GroundPlaneWidth', 100e-3);

Создайте линейную матрицу с инвертированной-F антенной как ее элементы.

la = linearArray;
la.Element = fco;
la.NumElements = 4;

Используйте эту антенную решетку, чтобы создать антенну PCB.

p = pcbStack(la);

Создайте dipole объект антенны и linearArray объект антенной решетки. В the linearArray объект антенны, отпуск the Element набор свойств к его значению по умолчанию диполя. Установите ElementSpacing свойство к 4."

d1 = dipole;
d2 = linearArray('ElementSpacing', 4);

Установить Z-координату pcbStack объект антенны обнулить, вращайте диполь и линейный дипольный массив приблизительно 90 градусов с помощью Tilt свойство. Затем установите TiltAxis свойство к [0 - 1 0] для диполя и линейных дипольных антенн массивов.

d1.Tilt = 90;
d2.Element.Tilt = 90;
d1.TiltAxis = [0 -1 0];
d2.Element.TiltAxis = [0 -1 0];

Создайте и антенна стека представления PCB создала использование dipole объект антенны.

p1 = pcbStack(d1);
show(p1)

Figure contains an axes object. The axes object with title pcbStack antenna element contains 3 objects of type patch, surface. These objects represent PEC, feed.

Создайте и антенна стека представления PCB с помощью linearArray объект антенной решетки.

p2 = pcbStack(d2);
show(p2)

Figure contains an axes object. The axes object with title pcbStack antenna element contains 4 objects of type patch, surface. These objects represent PEC, feed.

Создайте круговую микрополосковую антенну закрашенной фигуры.

ant = design(patchMicrostripCircular,3e9);
ant.Substrate = dielectric( 'FR4' );
show(ant)

Figure contains an axes object. The axes object with title patchMicrostripCircular antenna element contains 6 objects of type patch, surface. These objects represent PEC, feed, FR4.

c = antenna.Circle;
show(c)

Figure contains an axes object. The axes object contains 2 objects of type patch. This object represents PEC.

c.NumPoints = 6;
c.Radius = 3*ant.Radius;
figure
show(c)

Figure contains an axes object. The axes object contains 2 objects of type patch. This object represents PEC.

Создайте стек PCB с помощью вершин, выведенных из круговой формы.

v = getShapeVertices(c);
cp = antenna.Polygon( 'Vertices' ,v);
pb = pcbStack(ant);
pb.Layers{3} = cp;
pb.BoardShape = cp;
show(pb)
axis equal

Figure contains an axes object. The axes object with title pcbStack antenna element contains 9 objects of type patch, surface. These objects represent PEC, feed, FR4.

Ссылки

[1] Balanis, C. A. Теория антенны. Анализ и проектирование. 3-й Эд. Хобокен, NJ: John Wiley & Sons, 2005.

[2] Стуцмен, W. L. и Гэри А. Тиле. Теория антенны и проект. 3-й Эд. Ривер-Стрит, NJ: John Wiley & Sons, 2013.

Введенный в R2017a
Для просмотра документации необходимо авторизоваться на сайте