linalg
::hilbert
Гильбертова матрица
Блокноты MuPAD® будут демонтированы в будущем релизе. Используйте live скрипты MATLAB® вместо этого.
Live скрипты MATLAB поддерживают большую часть функциональности MuPAD, хотя существуют некоторые различия. Для получения дополнительной информации смотрите, Преобразуют Notebook MuPAD в Live скрипты MATLAB.
linalg::hilbert(n
, <R
>)
linalg::hilbert(n)
возвращает n ×n Гильбертова матрица H = (h i, j) 1 ≤ i ≤ m, 1 ≤ j ≤ n, заданный.
Записи Гильбертовых матриц являются рациональными числами. Обратите внимание, однако, что возвращенная матрица не задана по доменному Dom::Rational
компонента, но по стандартному доменному
Dom::ExpressionField()
компонента. Таким образом никакое преобразование не необходимо при работе с другими функциями, которые ожидают или возвращают матрицы по той области компонента.
Используйте linalg::hilbert(n, Dom::Rational)
задавать n ×n Гильбертова матрица по полю рациональных чисел.
Мы создаем 3×3 Гильбертова матрица:
H := linalg::hilbert(3)
Это - матрица доменного Dom::Matrix()
.
Если вы предпочитаете различный звонок компонента, матрица может быть преобразована в желаемую область после конструкции (см. coerce
, например). В качестве альтернативы можно задать звонок компонента при создании Гильбертовой матрицы. Например, спецификация доменного Dom::Float
генерирует записи с плавающей точкой:
H := linalg::hilbert(3, Dom::Float)
domtype( H )
|
Размерность матрицы: положительное целое число |
|
Звонок компонента: область категории |
n ×n матрица доменного Dom::Matrix
(R)
.
Гильбертовы матрицы симметричны и положительные определенный.
Гильбертовы матрицы большой размерности являются известно плохо обусловленным оспариванием любой числовой схеме инверсии. Однако их инверсия может также быть вычислена закрытой формулой (см. linalg::invhilbert
).