Системы транспортных средств

Внедрение машин и средств управления для автомобильных, морских и аэрокосмических систем

Рекомендуемые примеры

Automotive Alternator Charging a Battery

Автомобильный генератор переменного тока, заряжающий батарею

Как поведение генератора переменного тока может быть абстрагировано к модели постоянного тока, которая моделирует эффективно. Эта тестовая обвязка сначала увеличивает скорость генератора переменного тока линейно с нуля до типичной скорости ожидания 900 об/мин. Когда сгенерированного напряжения достаточно для преодоления прямого падения напряжения, связанного с выпрямительными диодами, ток зарядки батареи начинает увеличиваться. Затем тестовая обвязка повышает скорость до 5 000 об/мин, и генератор переменного тока должен отключить напряжение возбуждения, чтобы поддерживать регулируемое напряжение. Модель захватывает увеличение сопротивления статора, когда генератор переменного тока нагревается, это снижает эффективность устройства

Electric Engine Dyno

Электрический Engine Dyno

Моделируйте электрический тест транспортного средства динамометра. Тестовое окружение содержит асинхронную машину (ASM) и внутреннюю синхронную машину с постоянными магнитами (IPMSM), соединенную друг с другом через механический вал. Обе машины питаются от высоковольтных батарей через управляемые трехфазные преобразователи. АСМ мощностью 164 кВт создает крутящий момент нагрузки. 35 кВт IPMSM является тестируемой электрической машиной. Тестируемая машина управления (IPMSM) управляет крутящим моментом IPMSM. Контроллер включает в себя многоскоростную основанную на ПИ структуру управления. Скорость регулирования крутящего момента без разомкнутого контура медленнее, чем скорость управления током с обратной связью. Планирование задач для контроллера реализовано как конечный автомат Stateflow ®. Подсистема Control Load Machine (ASM) использует одну скорость для управления скоростью ASM. Подсистема визуализации содержит возможности, которые позволяют вам видеть результаты симуляции.

Energy Balance in a 48V Starter Generator

Энергетический баланс в генераторе 48V Starter

Синхронная машина с внутренними постоянными магнитами (IPMSM), используемая в качестве стартера/генератора в упрощенной 48V автомобильной системе. Система содержит 48V электрическую сеть и 12V электрическую сеть. Двигатель внутреннего сгорания (ДВС) представлен основными механическими блоками. IPMSM работает как двигатель до тех пор, пока ICE не достигнет скорости холостого хода, а затем работает как генератор. IPMSM подает степень на 48V сеть, которая содержит R3 потребителя степени. Сеть 48V обеспечивает степень 12V сети, которая имеет двух потребителей: R1 и R2. Общее время симуляции (t) составляет 0,5 секунды. На t = 0,05 секунде включается ICE. На t = 0,1 секунде R3 включается. На t = 0,3 секунде R2 включается и увеличивает нагрузку на 12V электрическую сеть. EM Контроллера подсистема включает в себя многоскоростной PI- структуры каскадного регулирования, который имеет внешний контур управления напряжением и два внутренних контура управления током. Планирование задач в Подсистеме управления реализовано как конечный автомат Stateflow ®. Подсистема Контроллера DCDC реализует простое ПИ-контроллер для Понижающего конвертера DC-DC, которая питает 12V сеть. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции.

IPMSG Voltage Stabilization

Стабилизация напряжения IPMSG

Управляйте системой генератора низкого напряжения для гибридного электрического транспортного средства (HEV) на базе синхронного генератора постоянных магнитов (IPMSG). Подсистема управления включает в себя многоскоростную основанную на ПИ структуру каскадного регулирования, которая имеет внешний контур управления напряжением и два внутренних контура управления током. Планирование задач в Подсистеме управления реализовано как конечный автомат Stateflow ®. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции. Идеальный источник скорости вращения, который представляет двигатель внутреннего сгорания, управляет IPMSG. IPMSG подает низковольтную степень на нагрузки R1 и R2. На t = 0,4 секунде переключатель закрывается, увеличивая нагрузку.

IPMSM Torque Control in a Series HEV

Управление крутящим моментом IPMSM в последовательном HEV

Синхронная машина с внутренними постоянными магнитами (IPMSM), двигающая гибридное электрическое транспортное средство (HEV) упрощенной серии. Идеальный преобразователь DCDC, подключенный к высоковольтной батарее, питает IPMSM через управляемый трехфазный преобразователь. Генератор, приводимый в действие двигателем внутреннего сгорания, заряжает высоковольтную батарею. Коробка передач транспортного средства и дифференциал реализованы с помощью модели редукции с фиксированным отношением. Подсистема контроллера транспортного средства преобразует входы драйвера в соответствующие команды для IPMSM и генератора. Подсистема контроллера привода управляет крутящим моментом IPMSM. Контроллер включает в себя многоскоростную основанную на ПИ структуру управления. Скорость регулирования крутящего момента без разомкнутого контура медленнее, чем скорость управления током с обратной связью. Планирование задач для контроллера реализовано как конечный автомат Stateflow ®. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции.

IPMSM Torque Control in a Series-Parallel HEV

Управление крутящим моментом IPMSM в последовательно-параллельном HEV

Упрощённое последовательно-параллельное гибридное электрическое транспортное средство (HEV). Синхронная машина с внутренними постоянными магнитами (IPMSM) и двигатель внутреннего сгорания (ICE) обеспечивают движение транспортного средства. ICE также использует электрогенератор, чтобы подзарядить высоковольтный аккумулятор во время вождения. Коробка передач транспортного средства и дифференциал реализованы с помощью модели редукции с фиксированным отношением. Подсистема Контроллер преобразует входы драйвера в команды крутящего момента. Стратегия управления транспортным средством реализована как конечный автомат Stateflow ®. Подсистема Контроллер управляет крутящим моментом двигателя внутреннего сгорания. Подсистема Контроллера Генератора управляет крутящим моментом электрогенератора. Подсистема контроллера привода управляет крутящим моментом IPMSM. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции.

IPMSM Torque Control in an Axle-Drive EV

Управление крутящим моментом IPMSM в приводе на оси EV

Синхронная машина с внутренними постоянными магнитами (IPMSM), двигающая упрощенный электропривод с транспортным средством. Высоковольтная батарея питает IPMSM через управляемый трехфазный преобразователь. IPMSM работает как в моторном, так и в генерирующем режимах. Коробка передач транспортного средства и дифференциал реализованы с помощью модели редукции с фиксированным отношением. Подсистема Контроллера Транспортного средства преобразует входы драйвера в соответствующую команду крутящего момента. Подсистема контроллера привода управляет крутящим моментом IPMSM. Контроллер включает в себя многоскоростную основанную на ПИ структуру управления. Скорость регулирования крутящего момента без разомкнутого контура медленнее, чем скорость управления током с обратной связью. Планирование задач для контроллера реализовано как конечный автомат Stateflow ®. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции.

IPMSM Torque Control in a Parallel HEV

Управление крутящим моментом IPMSM в параллельном HEV

Упрощённое параллельное гибридное электрическое транспортное средство (HEV). Синхронная машина с внутренними постоянными магнитами (IPMSM) и двигатель внутреннего сгорания (ICE) обеспечивают движение транспортного средства. IPMSM работает как в моторном, так и в генерирующем режимах. Коробка передач транспортного средства и дифференциал реализованы с помощью модели редукции с фиксированным отношением. Подсистема Контроллер преобразует входы драйвера в команды крутящего момента. Стратегия управления транспортным средством реализована как конечный автомат Stateflow ®. Подсистема Контроллер управляет крутящим моментом двигателя внутреннего сгорания. Подсистема контроллера привода управляет крутящим моментом IPMSM. Подсистема Возможностей содержит возможности, которые позволяют вам видеть результаты симуляции.

Для просмотра документации необходимо авторизоваться на сайте