patchMicrostripTriangular

Создайте треугольную микрополосковую антенну закрашенной фигуры

Описание

Используйте объект patchMicrostripTriangular создать треугольную микрополосковую антенну закрашенной фигуры. Закрашенная фигура по умолчанию сосредоточена в начале координат. По умолчанию размерности выбраны для рабочей частоты 15 ГГц. Если вы используете подложку Тефлона, значение по умолчанию, рабочая частота на уровне 12,5 ГГц.

Создание

Синтаксис

trianglepatch = patchMicrostripTriangular
trianglepatch = patchMicrostripTriangular(Name,Value)

Описание

пример

trianglepatch = patchMicrostripTriangular создает треугольную микрополосковую антенну закрашенной фигуры.

пример

trianglepatch = patchMicrostripTriangular(Name,Value) свойства наборов с помощью одной или нескольких пар "имя-значение". Например, trianglepatch = patchMicrostripTriangular('Side',0.2) создает треугольную микрополосковую закрашенную фигуру с длиной стороны 0,2 м. Заключите каждое имя свойства в кавычки.

Свойства

развернуть все

Длины стороны треугольной закрашенной фигуры, заданной как скаляр в метрах или двух или трехэлементном векторе с каждым модулем элемента в метрах.

  • Равносторонний треугольник - значение свойства Side является скаляром. Все три стороны треугольника равны.

  • Равнобедренный треугольник - значение свойства Side является двухэлементным вектором. Первое значение задает основу треугольника вдоль оси X. Второе значение задает другие две стороны треугольника.

  • Разносторонний треугольник - значение свойства Side является трехэлементным вектором. Первое значение задает основу треугольника вдоль оси X. Остающиеся два значения задают другие две стороны треугольника.

Пример: 'Side',0.2

Пример: trianglepatch.Side = [0.2,0.3,0.4], где первое значение является основой разностороннего треугольника вдоль оси X.

Типы данных: double

Исправьте высоту над землей вдоль оси Z, заданной как скаляр в метрах.

Пример: 'Height',0.2

Пример: trianglepatch.Height = 0.002

Типы данных: double

Оснуйте плоскую длину вдоль Оси X, заданной как скаляр в метрах.

Пример: 'GroundPlaneLength',120e-3

Пример: trianglepatch.GroundPlaneLength = 120e-3

Типы данных: double

Оснуйте плоскую ширину вдоль Оси Y, заданной как скаляр в метрах.

Пример: 'GroundPlaneWidth',120e-3

Пример: trianglepatch.GroundPlaneWidth = 120e-3

Типы данных: double

Расстояние со знаком закрашенной фигуры от источника, заданного как двухэлементный вектор действительных чисел с каждым модулем элемента в метрах. Используйте это свойство настроить местоположение закрашенной фигуры относительно наземной плоскости. Расстояния измеряются вдоль длины и ширины наземной плоскости.

Пример: 'PatchCenterOffset',[0.01 0.01]

Пример: trianglepatch.PatchCenterOffset = [0.01 0.01]

Типы данных: double

Расстояние со знаком канала от источника, заданного как двухэлементный вектор действительных чисел с каждым модулем элемента в метрах. Используйте это свойство настроить местоположение feedpoint относительно наземной плоскости и закрашенной фигуры. Расстояния измеряются вдоль длины и ширины наземной плоскости.

Пример: 'FeedOffset',[0.01 0.01]

Пример: trianglepatch.FeedOffset = [0.01 0.01]

Типы данных: double

Питайте диаметр, заданный как скаляр в метрах.

Пример: 'FeedDiameter',0.0600

Пример: trianglepatch.FeedDiameter = 0.0600

Типы данных: double

Тип диэлектрического материала используется в качестве подложки, заданной как диэлектрический объект. Вы помещаете закрашенную фигуру по этой диэлектрической подложке. Для получения дополнительной информации смотрите dielectric. Для получения дополнительной информации о диэлектрической запутывающей подложке смотрите Запутывающий.

Примечание

Размерности подложки должны быть равны groundplane размерностям.

Пример: d = dielectric('FR4'); 'Substrate',d

Пример: d = dielectric('FR4'); trianglepatch.Substrate = d

Смешанные элементы добавляются к каналу антенны, заданному как смешанный объект элемента. Можно добавить нагрузку где угодно на поверхность антенны. По умолчанию загрузка в начале координат. Для получения дополнительной информации смотрите lumpedElement.

Пример: 'Load',lumpedelement, где lumpedelement является указателем на объект для загрузки, созданной с помощью lumpedElement.

Пример: trianglepatch.Load = lumpedElement('Impedance',75)

Угол наклона антенны, заданной как скаляр или вектор с каждым модулем элемента в градусах. Для получения дополнительной информации смотрите, Вращают Антенну и Массивы.

Пример: 'Tilt',90

Пример: 'Tilt',[90 90] 'TiltAxis',[0 1 0;0 1 1] наклоняет антенну в 90 степенях приблизительно две трехэлементных векторных точки на пробеле.

Типы данных: double

Наклонная ось антенны, заданной как:

  • Трехэлементные векторы Декартовых координат в метрах. В этом случае каждый вектор запускается в начале координат и простирается вдоль заданных точек на X-, Y-и осях Z-.

  • Две точки на пробеле, каждый заданный как трехэлементные векторы Декартовых координат. В этом случае антенна вращается вокруг строки, присоединяющейся к двум точкам в пробеле.

  • Вход строки, описывающий простые вращения вокруг одной из основных осей, 'X', 'Y' или 'Z'.

Для получения дополнительной информации смотрите, Вращают Антенну и Массивы.

Пример: 'TiltAxis',[0 1 0]

Пример: 'TiltAxis',[0 0 0;0 1 0]

Пример: ant.TiltAxis = 'Z'

Функции объекта

showОтобразите антенну или структуру массива; Отобразите форму как заполненную закрашенную фигуру
axialRatioКоэффициент эллиптичности антенны
beamwidthШирина луча антенны
chargeРаспределение заряда на металлической или диэлектрической антенне или поверхности массивов
currentРаспределение тока на металлической или диэлектрической антенне или поверхности массивов
designРазработайте прототипную антенну или массивы для резонанса на заданной частоте
EHfieldsЭлектрические и магнитные поля антенн; Встроенные электрические и магнитные поля элемента антенны в массивах
impedanceВходной импеданс антенны; отсканируйте импеданс массива
meshПоймайте в сети свойства металлической или диэлектрической антенны или структуры массива
meshconfigИзмените режим mesh структуры антенны
patternДиаграмма направленности и фаза антенны или массива; Встроенный шаблон элемента антенны в массиве
patternAzimuthШаблон азимута антенны или массива
patternElevationШаблон повышения антенны или массива
returnLossВозвратите потерю антенны; отсканируйте возвращают потерю массива
sparametersS-объект-параметра
vswrНапряжение постоянное отношение волны антенны

Примеры

свернуть все

Создайте и просмотрите треугольную микрополосковую закрашенную фигуру по умолчанию.

p = patchMicrostripTriangular
p = 
  patchMicrostripTriangular with properties:

                 Side: 0.0102
               Height: 0.0016
            Substrate: [1x1 dielectric]
    GroundPlaneLength: 0.0120
     GroundPlaneWidth: 0.0120
    PatchCenterOffset: [0 0]
           FeedOffset: [0 5.4173e-04]
         FeedDiameter: 2.5000e-04
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

show(p)

Постройте диаграмму направленности на уровне 15 ГГц.

pattern(p,15e9)

Создайте различные типы треугольников, чтобы использовать в закрашенной фигуре.

Равносторонний треугольник

Создайте закрашенную фигуру равностороннего треугольника стороны 10.2 мм.

ant = patchMicrostripTriangular('Side',10.2e-3);
show(ant);

Равнобедренный треугольник

Создайте равнобедренную треугольную антенну закрашенной фигуры со сторонами с помощью следующих размерностей: 10,2 мм и 15 мм.

ant =  patchMicrostripTriangular('Side',[10.2e-3,15e-3]);
show(ant);

В вышеупомянутой фигуре вы будете видеть, что первое значение стороны выбрано в качестве основы треугольника.

Разносторонний треугольник

Создайте косоугольную треугольную антенну закрашенной фигуры со стороной с помощью следующих размерностей: 21 мм, 13 мм и 20 мм.

patchMicrostripTriangular('Side',[21e-3,13e-3,20e-3]);
show(ant);

В вышеупомянутой фигуре вы будете видеть, что первое значение стороны выбрано в качестве основы треугольника.

Создайте и просмотрите треугольную микрополосковую закрашенную фигуру с помощью подложки Тефлона.

d = dielectric('Teflon');
p = patchMicrostripTriangular('Substrate',d);
show(p)

Постройте диаграмму направленности антенны на уровне 12,5 ГГц.

pattern(p,12.5e6)

Введенный в R2018a