floatbycir

Ценовое долговое обязательство с плавающей ставкой от дерева процентной ставки Кокса-Инджерсолла-Росса

Синтаксис

[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbycir(___,Name,Value)

Описание

пример

[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity) оценивает долговое обязательство с плавающей ставкой от Кокса-Инджерсолла-Росса (CIR) дерево процентной ставки.

floatbycir вычисляет цены долговых обязательств с плавающей ставкой ванили, амортизируя долговые обязательства с плавающей ставкой, ограниченные долговые обязательства с плавающей ставкой, поставил в тупик долговые обязательства с плавающей ставкой и закрепил долговые обязательства с плавающей ставкой кольцом с помощью модели CIR ++ с подходом Навалька-Беляевой (NB).

пример

[Price,PriceTree] = floatbycir(___,Name,Value) добавляют дополнительные аргументы пары "имя-значение".

Примеры

свернуть все

Задайте Spread 20 пунктов для долгового обязательства с плавающей ставкой.

Spread = 20;

Создайте RateSpec с помощью функции intenvset.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Создайте дерево CIR.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)
CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Оцените долговое обязательство с плавающей ставкой на 20 пунктов.

[Price,PriceTree] = floatbycir(CIRT,Spread,Settle,Maturity) 
Price = 100.7143
PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Входные параметры

свернуть все

Древовидная структура процентной ставки, созданная cirtree

Типы данных: struct

Количество пунктов по ссылочному уровню, заданному как NINST-by-1 вектор.

Типы данных: double

Расчетный день, заданный или как скаляр или как NINST-by-1 вектор последовательных чисел даты, векторов символов даты, строковых массивов или массивов datetime.

Дата Settle каждого долгового обязательства с плавающей ставкой назначена к ValuationDate дерева CIR. Аргумент Settle долгового обязательства с плавающей ставкой проигнорирован.

Типы данных: char | double | string | datetime

Дата погашения, заданная как NINST-by-1 вектор последовательных чисел даты, векторов символов даты, строковых массивов или массивов datetime, представляющих дату погашения для каждого долгового обязательства с плавающей ставкой.

Типы данных: char | double | string | datetime

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: [Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity,'Basis',3)

Частота платежей в год, заданный как пара, разделенная запятой, состоящая из 'FloatReset' и NINST-by-1 вектор.

Примечание

Платежи по долговым обязательствам с плавающей ставкой (FRNs) определяются эффективной процентной ставкой между датами сброса. Если период сброса для FRN охватывает больше чем один древовидный уровень, вычисление оплаты становится невозможным из-за повторно объединяющейся природы дерева. Таким образом, древовидный путь, соединяющий две последовательных даты сброса, не может быть исключительно определен, потому что существует больше чем один возможный путь для соединения этих двух платежных дней.

Типы данных: double

Дневное основание количества, представляющее основание, используемое при пересчитывании на год входного дерева форвардного курса, заданного как пара, разделенная запятой, состоящая из 'Basis' и NINST-by-1 вектор.

  •  0 = фактический/фактический

  •  1 = 30/360 (СИА)

  •  2 = Фактический/360

  •  3 = Фактический/365

  •  4 = 30/360 (PSA)

  •  5 = 30/360 (ISDA)

  •  6 = 30/360 (европеец)

  •  7 = Фактический/365 (японский язык)

  •  8 = фактический/фактический (ICMA)

  •  9 = Фактический/360 (ICMA)

  •  10 = Фактический/365 (ICMA)

  •  11 = 30/360E (ICMA)

  •  12 = Фактический/365 (ISDA)

  •  13 = ШИНА/252

Для получения дополнительной информации смотрите основание.

Типы данных: double

Отвлеченные основные суммы, заданные как пара, разделенная запятой, состоящая из 'Principal' и векторного массива или массива ячеек.

Principal принимает NINST-by-1 вектор или NINST-by-1 массив ячеек, где каждым элементом массива ячеек является NumDates-by-2 массив ячеек, и первый столбец является датами, и второй столбец является своим связанным отвлеченным основным значением. Дата указывает в последний день, что основное значение допустимо.

Типы данных: cell | double

Правило конца месяца отмечает для генерации дат, когда Maturity является датой конца месяца в течение месяца, имея 30 или меньше дней, заданных как пара, разделенная запятой, состоящая из 'EndMonthRule' и неотрицательного целого числа [0, 1] использование NINST-by-1 вектор.

  • 0 = Игнорирует правило, означая, что платежный день всегда является тем же числовым днем месяца.

  • 1 = Установленное правило о, означая, что платежный день всегда является прошлым фактическим днем месяца.

Типы данных: логический

Отметьте, чтобы настроить потоки наличности на основе фактического дневного количества периода, заданного как пара, разделенная запятой, состоящая из 'AdjustCashFlowsBasis' и NINST-by-1 вектор logicals со значениями (FALSE) 0 или (TRUE) 1.

Типы данных: логический

Праздники используются в вычислении рабочих дней, заданных как пара, разделенная запятой, состоящая из 'Holidays' и чисел даты MATLAB с помощью NHolidays-by-1 вектор.

Типы данных: double

Соглашения рабочего дня, заданные как пара, разделенная запятой, состоящая из 'BusinessDayConvention' и вектора символов или N-by-1 массив ячеек из символьных векторов соглашений рабочего дня. Выбор для соглашения рабочего дня определяет, как обработаны нерабочие дни. Нерабочие дни заданы как выходные плюс любая другая дата, что компании не открыты (например, установленные законом праздники). Значения:

  • actual — Нерабочие дни эффективно проигнорированы. Потоки наличности, которые падают в нерабочие дни, приняты, чтобы быть распределенными в фактическую дату.

  • follow — Потоки наличности, которые падают в нерабочий день, приняты, чтобы быть распределенными в следующий рабочий день.

  • modifiedfollow — Потоки наличности, которые падают в нерабочий день, приняты, чтобы быть распределенными в следующий рабочий день. Однако, если следующий рабочий день находится в различном месяце, предыдущий рабочий день принят вместо этого.

  • previous — Потоки наличности, которые падают в нерабочий день, приняты, чтобы быть распределенными в предыдущий рабочий день.

  • modifiedprevious — Потоки наличности, которые падают в нерабочий день, приняты, чтобы быть распределенными в предыдущий рабочий день. Однако, если предыдущий рабочий день находится в различном месяце, следующий рабочий день принят вместо этого.

Типы данных: char | cell

Ежегодный уровень прописной буквы, заданный как пара, разделенная запятой, состоящая из 'CapRate' и NINST-by-1 десятичный годовой показатель или NINST-by-1 массив ячеек, где каждым элементом является NumDates-by-2 массив ячеек и массив ячеек первый столбец, является датами, и второй столбец является сопоставленными уровнями прописной буквы. Дата указывает в последний день, что уровень прописной буквы допустим.

Типы данных: double | cell

Ежегодный уровень пола, заданный как пара, разделенная запятой, состоящая из 'FloorRate' и NINST-by-1 десятичный годовой показатель или NINST-by-1 массив ячеек.

Для NINST-by-1 массив ячеек, каждым элементом является NumDates-by-2 массив ячеек, где массив ячеек, первый столбец является датами и вторым столбцом, является сопоставленными уровнями пола. Дата указывает в последний день, что уровень пола допустим.

Типы данных: double | cell

Выходные аргументы

свернуть все

Ожидаемые цены долгового обязательства с плавающей ставкой во время 0, возвращенный как NINST-by-1 вектор.

Древовидная структура цен на инструменты, возвращенных как структура MATLAB деревьев, содержащих векторы цен на инструменты и начисленных процентов, и вектор времен наблюдения для каждого узла. В PriceTree:

  • PriceTree.PTree содержит чистые цены.

  • PriceTree.AITree содержит начисленные проценты.

  • PriceTree.tObs содержит времена наблюдения.

  • PriceTree.Connect содержит векторы возможности соединения. Каждый элемент в массиве ячеек описывает, как узлы на том уровне соединяются со следующим. Для данного древовидного уровня в векторе существуют элементы NumNodes, и они содержат индекс узла на следующем уровне, с которым соединяется среднее ответвление. Вычитание 1 от того значения указывает, где подключения-ответвления к, и добавление 1 указали, где вниз переходят подключения к.

  • PriceTree.Probs содержит массивы вероятности. Каждый элемент массива ячеек содержит, середина и вероятности перехода вниз для каждого узла уровня.

Ссылки

[1] Cox, J., Ингерсолл, J. и С. Росс. "Теория термина структура процентных ставок". Econometrica. Издание 53, 1985.

[2] Brigo, D. и Ф. Меркурио. Модели процентной ставки - теория и практика. Финансы Спрингера, 2006.

[3] Hirsa, A. Вычислительные методы в финансах. Нажатие CRC, 2012.

[4] Nawalka, S., Soto, G. и Н. Беляева. Динамическое моделирование структуры термина. Вайли, 2007.

[5] Нельсон, D. и К. Рамасвами. "Простые Биномиальные Процессы как Приближения Диффузии в Финансовых Моделях". Анализ Финансовых Исследований. Vol 3. 1990, стр 393–430.

Введенный в R2018a