pdf

Функция плотности вероятности

Описание

пример

y = pdf('name',x,A) возвращает функцию плотности вероятности (PDF) для семейства распределений с одним параметром, заданного 'name' и параметр распределения A, оцененный в значениях в x.

пример

y = pdf('name',x,A,B) возвращает PDF для семейства распределений 2D параметра, заданного 'name' и параметры распределения A и B, оцененный в значениях в x.

y = pdf('name',x,A,B,C) возвращает PDF для семейства распределений с тремя параметрами, заданного 'name' и параметры распределения AB, и C, оцененный в значениях в x.

y = pdf('name',x,A,B,C,D) возвращает PDF для семейства распределений с четырьмя параметрами, заданного 'name' и параметры распределения ABC, и D, оцененный в значениях в x.

пример

y = pdf(pd,x) возвращает PDF объекта pd вероятностного распределения, оцененный в значениях в x.

Примеры

свернуть все

Создайте стандартный объект нормального распределения со средним значением μ равняйтесь 0 и стандартное отклонение σ равняйтесь 1.

mu = 0;
sigma = 1;
pd = makedist('Normal','mu',mu,'sigma',sigma);

Задайте входной вектор x, чтобы содержать значения, в которых можно вычислить PDF.

x = [-2 -1 0 1 2];

Вычислите значения PDF для стандартного нормального распределения в значениях в x.

y = pdf(pd,x)
y = 1×5

    0.0540    0.2420    0.3989    0.2420    0.0540

Каждое значение в y соответствует значению во входном векторе x. Например, в значении x равный 1, соответствующее значение PDF y равно 0,2420.

В качестве альтернативы можно вычислить те же значения PDF, не создавая объект вероятностного распределения. Используйте pdf функция, и задает стандартное нормальное распределение с помощью тех же значений параметров в μ и σ.

y2 = pdf('Normal',x,mu,sigma)
y2 = 1×5

    0.0540    0.2420    0.3989    0.2420    0.0540

Значения PDF совпадают с теми вычисленное использование объекта вероятностного распределения.

Создайте объект распределения Пуассона параметром уровня, λ, равняйтесь 2.

lambda = 2;
pd = makedist('Poisson','lambda',lambda);

Задайте входной вектор x, чтобы содержать значения, в которых можно вычислить PDF.

x = [0 1 2 3 4];

Вычислите значения PDF для распределения Пуассона в значениях в x.

y = pdf(pd,x)
y = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902

Каждое значение в y соответствует значению во входном векторе x. Например, в значении x равный 3, соответствующее значение PDF в y равно 0,1804.

В качестве альтернативы можно вычислить те же значения PDF, не создавая объект вероятностного распределения. Используйте pdf функция, и задает распределение Пуассона с помощью того же значения в параметре уровня, λ.

y2 = pdf('Poisson',x,lambda)
y2 = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902

Значения PDF совпадают с теми вычисленное использование объекта вероятностного распределения.

Создайте стандартный объект нормального распределения.

pd = makedist('Normal')
pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Задайте x значения и вычисляют PDF.

x = -3:.1:3;
pdf_normal = pdf(pd,x);

Постройте PDF.

plot(x,pdf_normal,'LineWidth',2)

Создайте объект вероятностного распределения Weibull.

pd = makedist('Weibull','a',5,'b',2)
pd = 
  WeibullDistribution

  Weibull distribution
    A = 5
    B = 2

Задайте x значения и вычисляют PDF.

x = 0:.1:15;
y = pdf(pd,x);

Постройте PDF.

plot(x,y,'LineWidth',2)

Входные параметры

свернуть все

Имя вероятностного распределения, заданное как одно из вероятностного распределения, называет в этой таблице.

'name'РаспределениеВведите параметр AВведите параметр BВведите параметр CВведите параметр D
'Beta'Бета распределениеa сначала формирует параметрb второй параметр формы
'Binomial'Биномиальное распределениеКоличество n испытанийВероятность p успеха для каждого испытания
'BirnbaumSaunders'Распределение Бирнбаума-СондерсаМасштабный коэффициент βПараметр формы γ
'Burr'Подпилите распределение типа XIIМасштабный коэффициент αc сначала формирует параметрk второй параметр формы
'Chisquare'Распределение хи-квадратСтепени свободы ν
'Exponential'Экспоненциальное распределениеСреднее значение μ
'Extreme Value'Распределение экстремумаПараметр положения μМасштабный коэффициент σ
'F'F распределениеСтепени свободы числителя ν1Степени свободы знаменателя ν2
'Gamma'Гамма распределениеПараметр формы aМасштабный коэффициент b
'Generalized Extreme Value'Обобщенное распределение экстремумаПараметр формы kМасштабный коэффициент σПараметр положения μ
'Generalized Pareto'Обобщенное распределение ПаретоИндекс хвоста k (форма) параметрМасштабный коэффициент σПорог μ (местоположение) параметр
'Geometric'Геометрическое распределениеПараметр вероятности p
'HalfNormal'Полунормальное распределениеПараметр положения μМасштабный коэффициент σ
'Hypergeometric'Геометрическое распределениеРазмер m населенияКоличество k элементов с желаемой характеристикой в населенииКоличество n выборок чертится
'InverseGaussian'Обратное распределение ГауссаМасштабный коэффициент μПараметр формы λ
'Logistic'Логистическое распределениеСреднее значение μМасштабный коэффициент σ
'LogLogistic'Распределение LoglogisticСреднее значение μ логарифмических значенийМасштабный коэффициент σ логарифмических значений
'Lognormal'Логарифмически нормальное распределениеСреднее значение μ логарифмических значенийСтандартное отклонение σ логарифмических значений
'Nakagami'Распределение NakagamiПараметр формы μМасштабный коэффициент ω
'Negative Binomial'Отрицательное биномиальное распределениеКоличество r успеховВероятность p успеха в одном испытании
'Noncentral F'Нецентральное распределение FСтепени свободы числителя ν1Степени свободы знаменателя ν2Параметр нецентрированности δ
'Noncentral t'Нецентральное t РаспределениеСтепени свободы νПараметр нецентрированности δ
'Noncentral Chi-square'Нецентральное распределение хи-квадратСтепени свободы νПараметр нецентрированности δ
'Normal'Нормальное распределениеСреднее значение μ Стандартное отклонение σ
'Poisson'Распределение ПуассонаСреднее значение λ
'Rayleigh'Распределение РелеяМасштабный коэффициент b
'Rician'Распределение RicianПараметр нецентрированности sМасштабный коэффициент σ
'Stable'Устойчивое распределениеα сначала формирует параметрβ второй параметр формыМасштабный коэффициент γПараметр положения δ
'T'T Распределение студентаСтепени свободы ν
'tLocationScale't Распределение Шкалы МестоположенияПараметр положения μМасштабный коэффициент σПараметр формы ν
'Uniform'(Непрерывное) равномерное распределениеa более низкая конечная точка (минимум)b верхняя конечная точка (максимум)
'Discrete Uniform'(Дискретное) равномерное распределениеМаксимум n заметное значение
'Weibull'Распределение WeibullМасштабный коэффициент aПараметр формы b

Пример: 'Normal'

Значения, в которых можно оценить PDF, заданный как скалярное значение или массив скалярных значений.

Если один или несколько входных параметров xABC, и D массивы, затем размеры массивов должны быть тем же самым. В этом случае, pdf расширяет каждый скалярный вход в постоянный массив одного размера с входными параметрами массивов. Смотрите 'name' для определений ABC, и D для каждого распределения.

Пример: [-1,0,3,4]

Типы данных: single | double

Первый параметр вероятностного распределения, заданный как скалярное значение или массив скалярных значений.

Если один или несколько входных параметров xABC, и D массивы, затем размеры массивов должны быть тем же самым. В этом случае, pdf расширяет каждый скалярный вход в постоянный массив одного размера с входными параметрами массивов. Смотрите 'name' для определений ABC, и D для каждого распределения.

Типы данных: single | double

Второй параметр вероятностного распределения, заданный как скалярное значение или массив скалярных значений.

Если один или несколько входных параметров xABC, и D массивы, затем размеры массивов должны быть тем же самым. В этом случае, pdf расширяет каждый скалярный вход в постоянный массив одного размера с входными параметрами массивов. Смотрите 'name' для определений ABC, и D для каждого распределения.

Типы данных: single | double

Третий параметр вероятностного распределения, заданный как скалярное значение или массив скалярных значений.

Если один или несколько входных параметров xABC, и D массивы, затем размеры массивов должны быть тем же самым. В этом случае, pdf расширяет каждый скалярный вход в постоянный массив одного размера с входными параметрами массивов. Смотрите 'name' для определений ABC, и D для каждого распределения.

Типы данных: single | double

Четвертый параметр вероятностного распределения, заданный как скалярное значение или массив скалярных значений.

Если один или несколько входных параметров xABC, и D массивы, затем размеры массивов должны быть тем же самым. В этом случае, pdf расширяет каждый скалярный вход в постоянный массив одного размера с входными параметрами массивов. Смотрите 'name' для определений ABC, и D для каждого распределения.

Типы данных: single | double

Вероятностное распределение, заданное как объект вероятностного распределения, созданный с функцией или приложением в этой таблице.

Функция или приложениеОписание
makedistСоздайте объект вероятностного распределения использование заданных значений параметров.
fitdistСоответствуйте объекту вероятностного распределения к выборочным данным.
Distribution FitterСтройте распределение вероятности к выборочным данным с помощью интерактивного приложения Distribution Fitter и экспортируйте подходящий объект в рабочую область.
paretotailsСоздайте кусочный объект распределения, который обобщил распределения Парето в хвостах.

Выходные аргументы

свернуть все

значения PDF, возвращенные как скалярное значение или массив скалярных значений. y одного размера с x после любого необходимого скалярного расширения. Каждый элемент в y значение PDF распределения, заданного соответствующими элементами в параметрах распределения (ABC, и D) или заданный объектом вероятностного распределения (pd), оцененный в соответствующем элементе в x.

Альтернативная функциональность

  • pdf родовая функция, которая принимает любого распределение его именем 'name' или объект pd вероятностного распределения. Это быстрее, чтобы использовать специфичную для распределения функцию, такую как normpdf для нормального распределения и binopdf для биномиального распределения. Для списка специфичных для распределения функций смотрите Поддерживаемые Распределения.

  • Используйте приложение Probability Distribution Function, чтобы создать интерактивный график кумулятивной функции распределения (cdf) или функции плотности вероятности (PDF) для вероятностного распределения.

Расширенные возможности

Представлено до R2006a