Модель Геометрического броуновского движения
Создает и отображает модели геометрического броуновского движения (GBM), которые выводят от cev (постоянная эластичность отклонения) класс.
Модели Геометрического броуновского движения (GBM) позволяют вам моделировать демонстрационные пути переменных состояния NVARS, управляемых источниками Броуновского движения NBROWNS риска по NPERIODS последовательные периоды наблюдения, аппроксимируя непрерывно-разовые стохастические процессы GBM. А именно, эта модель позволяет симуляцию процессов GBM с векторным знаком формы
где:
Xt является NVARS-by-1 вектор состояния переменных процесса.
μ является NVARS-by-NVARS обобщенный, ожидал мгновенную матрицу нормы прибыли.
D является NVARS-by-NVARS диагональная матрица, где каждый элемент по основной диагонали является соответствующим элементом вектора состояния Xt.
V является NVARS-by-NBROWNS мгновенная матрица уровня энергозависимости.
dWt является NBROWNS-by-1 вектор Броуновского движения.
GBM = gbm(Return,Sigma)GBM = gbm(___,Name,Value) создает объект GBM = gbm(Return,Sigma)GBM по умолчанию.
Задайте требуемые входные параметры как один из следующих типов:
Массив MATLAB®. Определение массива указывает на статическую (неизменяющуюся во времени) параметрическую спецификацию. Этот массив полностью получает все детали реализации, которые ясно сопоставлены с параметрической формой.
Функция MATLAB. Определение функции оказывает косвенную поддержку для фактически любой статической, динамической, линейной, или нелинейной модели. Этот параметр поддерживается через интерфейс, потому что все детали реализации скрыты и полностью инкапсулируются функцией.
Можно задать комбинации массива и параметров входного параметра функции по мере необходимости.
Кроме того, параметр идентифицирован как детерминированная функция времени, если функция принимает скалярное время t как его единственный входной параметр. В противном случае параметр принят, чтобы быть функцией времени t и утвердить X(t) и вызывается с обоими входными параметрами.
создает объект GBM = gbm(___,Name,Value)GBM с дополнительными опциями, заданными одним или несколькими аргументами пары Name,Value.
Name является именем свойства, и Value является своим соответствующим значением. Имя должно находиться внутри одинарных кавычек (' '). Можно задать несколько аргументов пары "имя-значение" в любом порядке как Name1,Value1,…,NameN,ValueN
Объект GBM имеет следующие Свойства:
Время начала Начальное время наблюдения
StartState — Начальное состояние в StartTime
Корреляция Функция доступа для входа Correlation, вызываемого как функция времени
Drift — Составная функция уровня дрейфа, вызываемая как функция времени и состояния
Diffusion — Составная функция уровня диффузии, вызываемая как функция времени и состояния
Simulation — Функция симуляции или метод
Возврат Функция доступа для входного параметра Return, вызываемый как функция времени и состояния
\sigma Функция доступа для входного параметра Sigma, вызываемый как функция времени и состояния
interpolate | Броуновская интерполяция стохастических дифференциальных уравнений |
simulate | Моделируйте многомерные стохастические дифференциальные уравнения (SDEs) |
simByEuler | Эйлерова симуляция стохастических дифференциальных уравнений (SDEs) |
simBySolution | Моделируйте приближенное решение диагонального дрейфа процессы GBM |
Когда вы задаете необходимые входные параметры как массивы, они сопоставлены с определенной параметрической формой. В отличие от этого, когда вы задаете любой необходимый входной параметр как функцию, можно настроить фактически любую спецификацию.
Доступ к выходным параметрам без входных параметров просто возвращает исходную входную спецификацию. Таким образом, когда вы вызываете эти параметры без входных параметров, они ведут себя как простые свойства и позволяют вам тестировать тип данных (удвойтесь по сравнению с функцией, или эквивалентно, статичные по сравнению с динамическим) исходной входной спецификации. Это полезно для проверки и разработки методов.
Когда вы вызываете эти параметры с входными параметрами, они ведут себя как функции, производя впечатление динамического поведения. Параметры принимают время наблюдения t и вектор состояния Xt, и возвращают массив соответствующей размерности. Даже если вы первоначально задали вход как массив, gbm обрабатывает его как статическую функцию времени, и состояние, этим означает гарантировать, что все параметры доступны тем же интерфейсом.
[1] Островок-Sahalia, Y. “Тестируя Непрерывно-разовые Модели Точечной Процентной ставки”. Анализ Финансовых Исследований, Spring 1996, Издания 9, № 2, стр 385–426.
[2] Островок-Sahalia, Y. “Плотность перехода для процентной ставки и другой нелинейной диффузии”. Журнал финансов, издания 54, № 4, август 1999.
[3] Глассермен, P. Методы Монте-Карло в финансовой разработке. Нью-Йорк, Springer-Verlag, 2004.
[4] Оболочка, J. C. Опции, фьючерсы и Другие Производные, 5-й редактор Englewood Cliffs, NJ: Prentice Hall, 2002.
[5] Джонсон, N. L. С. Коц и Н. Бэлэкришнэн. Непрерывные Одномерные распределения. Издание 2, 2-й редактор Нью-Йорк, John Wiley & Sons, 1995.
[6] Shreve, S. E. Стохастическое исчисление для финансов II: непрерывно-разовые модели. Нью-Йорк: Springer-Verlag, 2004.
bm | cev | diffusion | drift | interpolate | simByEuler | simulate