exponenta event banner

sdeddo

Модель стохастического дифференциального уравнения (SDE) из дрейфа и диффузионных компонентов

Описание

Создание и отображение sdeddo объекты, инстантифицированные с объектами классаdrift и diffusion. Эти ограничения sdeddo объекты содержат входные данные drift и diffusion объекты; поэтому можно получить прямой доступ к отображаемым параметрам.

Эта абстракция также обобщает понятие объектов дрейфа и скорости диффузии как функций, которые sdeddo вычисляет конкретные значения времени t и состояния Xt. Как sde объекты, sdeddo объекты позволяют моделировать пути образцов NVars переменные состояния, управляемые NBrowns Броуновские источники движения риска NPeriods последовательные периоды наблюдения, аппроксимирующие стохастические процессы непрерывного времени.

Этот метод позволяет моделировать любые векторные значения SDEDDO вида:

dXt = F (t, Xt) dt + G (t, Xt) dWt(1)
где:

  • Xt - это NVarsоколо-1 вектор состояния переменных процесса.

  • dWt является NBrownsоколо-1 Броуновский вектор движения.

  • F - это NVarsоколо-1 векторнозначная функция скорости дрейфа.

  • G - это NVarsоколо-NBrowns матричная функция скорости диффузии.

Создание

Описание

пример

SDEDDO = sdeddo(DriftRate,DiffusionRate) создает значение по умолчанию SDEDDO объект.

пример

SDEDDO = sdeddo(___,Name,Value) создает SDEDDO объект с дополнительными опциями, заданными одним или несколькими Name,Value аргументы пары.

Name является именем свойства и Value - соответствующее ему значение. Name должно отображаться внутри отдельных кавычек (''). Можно указать несколько аргументов пары имя-значение в любом порядке как Name1,Value1,…,NameN,ValueN.

SDEDDO объект имеет следующие отображаемые свойства:

  • StartTime - Начальное время наблюдения

  • StartState - Начальное состояние в момент времени StartTime

  • Correlation - Функция доступа для Correlation входной аргумент, вызываемый как функция времени

  • Drift - Составная функция скорости дрейфа, вызываемая как функция времени и состояния

  • Diffusion - Композитная функция скорости диффузии, вызываемая как функция времени и состояния

  • A - Функция доступа для свойства скорости дрейфа A, вызываемый как функция времени и состояния

  • B - Функция доступа для свойства скорости дрейфа B, вызываемый как функция времени и состояния

  • Alpha - Функция доступа для свойства скорости диффузии Alpha, вызываемый как функция времени и состояния

  • Sigma - Функция доступа для свойства скорости диффузии Sigma, вызываемый как функция времени и состояния

  • Simulation - Функция или метод моделирования

Входные аргументы

развернуть все

DriftRate является определяемой пользователем функцией скорости дрейфа и представляет параметр F, указанный как вектор или объект класса drift.

DriftRate - функция, возвращающая NVarsоколо-1 вектор скорости дрейфа при вызове с двумя входами:

  • Действительное скалярное время наблюдения t.

  • Один NVarsоколо-1 вектор состояния Xt.

В качестве альтернативы, DriftRate также может быть объектом класса drift который инкапсулирует спецификацию скорости дрейфа. В этом случае, однако, sde использует только Rate параметр объекта. Для получения дополнительной информации о drift объект, см. drift.

Типы данных: double

DiffusionRate является определяемой пользователем функцией скорости дрейфа и представляет параметр G, указанный как матрица или объект класса diffusion.

DiffusionRate - функция, возвращающая NVarsоколо-NBrowns матрица скорости диффузии при вызове с двумя входами:

  • Действительное скалярное время наблюдения t.

  • Один NVarsоколо-1 вектор состояния Xt.

В качестве альтернативы, DiffusionRate также может быть объектом класса diffusion который инкапсулирует спецификацию скорости диффузии. В этом случае, однако, sde использует только Rate параметр объекта. Для получения дополнительной информации о diffusion объект, см. diffusion.

Типы данных: double

Свойства

развернуть все

Время начала первого наблюдения, применяемое ко всем переменным состояния, указанным как скаляр

Типы данных: double

Начальные значения переменных состояния, заданные как скаляр, вектор столбца или матрица.

Если StartState является скаляром, sdeddo применяет одно и то же начальное значение ко всем переменным состояния во всех испытаниях.

Если StartState - вектор столбца, sdeddo применяет уникальное начальное значение к каждой переменной состояния во всех испытаниях.

Если StartState является матрицей, sdeddo применяет уникальное начальное значение к каждой переменной состояния в каждой пробной версии.

Типы данных: double

Корреляция между гауссовыми случайными переменными, нарисованными для генерации броуновского вектора движения (винеровские процессы), указанного как NBrownsоколо-NBrowns положительная полуопределенная матрица, или как детерминированная функция C (t), которая принимает текущее время t и возвращает NBrownsоколо-NBrowns положительная полуопределенная корреляционная матрица. Если Correlation не является симметричной положительной полуопределенной матрицей, используйте nearcorr для создания положительной полуопределенной матрицы для корреляционной матрицы.

A Correlation матрица представляет статическое условие.

Как детерминированная функция времени, Correlation позволяет задать динамическую структуру корреляции.

Типы данных: double

Определяемая пользователем функция моделирования или метод моделирования SDE, указанный как функция или метод моделирования SDE.

Типы данных: function_handle

Это свойство доступно только для чтения.

Компонент скорости дрейфа стохастических дифференциальных уравнений непрерывного времени (SDE), определяемый как объект дрейфа или функция, доступная (t, Xt.

Спецификация скорости дрейфа поддерживает моделирование путей выборки NVars переменные состояния, управляемые NBrowns Броуновские источники движения риска NPeriods последовательные периоды наблюдения, аппроксимирующие стохастические процессы непрерывного времени.

drift класс позволяет создавать объекты скорости дрифта с помощью drift формы:

F (t, Xt) = A (t) + B (t) Xt

где:

  • A является NVarsоколо-1 функция с векторным значением, доступная с помощью интерфейса (t, Xt).

  • B является NVarsоколо-NVars функция со значением матрицы, доступная с помощью интерфейса (t, Xt).

Отображаемые параметры для drift объектами являются:

  • Rate: Функция скорости дрейфа, F (t, Xt)

  • A: Термин перехвата, A (t, Xt), F (t, Xt)

  • B: Первый срок заказа, B (t, Xt), F (t, Xt)

A и B позволяет запрашивать исходные входные данные. Функция, сохраненная в Rate полностью инкапсулирует комбинированный эффект A и B.

Если указано как двойные массивы MATLAB ®, входные данныеA и B четко связаны с параметрической формой линейной скорости дрейфа. Однако указание либо A или B как функция позволяет настраивать практически любую спецификацию скорости дрейфа.

Примечание

Вы можете выразить drift и diffusion классы в наиболее общем виде, чтобы подчеркнуть функциональный (t, Xt) интерфейс. Однако можно указать компоненты A и B как функции, которые соответствуют общему (t, Xt) интерфейсу, или как массивы MATLAB соответствующего размера.

Пример: F = drift(0, 0.1) % Drift rate function F(t,X)

Типы данных: struct | double

Это свойство доступно только для чтения.

Компонент скорости диффузии стохастических дифференциальных уравнений непрерывного времени (SDE), определяемый как объект дрейфа или функция, доступная (t, Xt.

Спецификация скорости диффузии поддерживает моделирование путей выборки NVars переменные состояния, управляемые NBrowns Броуновские источники движения риска NPeriods последовательные периоды наблюдения, аппроксимирующие стохастические процессы непрерывного времени.

diffusion класс позволяет создавать объекты с диффузионной скоростью с помощью diffusion:

G (t, Xt) = D (t, Xtα (t)) V (t)

где:

  • D является NVarsоколо-NVars диагональная матрично-значимая функция.

  • Каждый диагональный элемент D - соответствующий элемент вектора состояния, возведенный в соответствующий элемент экспоненты Alpha, который является NVarsоколо-1 векторнозначная функция.

  • V является NVarsоколо-NBrowns функция волатильности с матричным значением Sigma.

  • Alpha и Sigma также доступны с помощью интерфейса (t, Xt).

Отображаемые параметры для diffusion объектами являются:

  • RateФункция скорости диффузии G (t, Xt).

  • Alpha: Экспонента вектора состояния, определяющая формат D (t, Xt) G (t, Xt).

  • SigmaСтепень летучести, V (t, Xt), G (t, Xt).

Alpha и Sigma позволяет запрашивать исходные входные данные. (Совокупный эффект индивидуума Alpha и Sigma параметры полностью инкапсулированы функцией, сохраненной в Rate.) Rate функции - вычислительные механизмы для drift и diffusion и являются единственными параметрами, необходимыми для моделирования.

Примечание

Вы можете выразить drift и diffusion классы в наиболее общем виде, чтобы подчеркнуть функциональный (t, Xt) интерфейс. Однако можно указать компоненты A и B как функции, которые соответствуют общему (t, Xt) интерфейсу, или как массивы MATLAB соответствующего размера.

Пример: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Типы данных: struct | double

Функции объекта

interpolateБроуновская интерполяция стохастических дифференциальных уравнений
simulateМоделирование многомерных стохастических дифференциальных уравнений (SDE)
simByEulerEuler моделирование стохастических дифференциальных уравнений (SDE)

Примеры

свернуть все

sdeddo класс является производным от базового sde класс. Чтобы использовать этот класс, необходимо передать объекты дрейфа и скорости диффузии в sdeddo функция.

Создать drift и diffusion объекты тарифа:

F = drift(0, 0.1);      % Drift rate function F(t,X)
G = diffusion(1, 0.3);  % Diffusion rate function G(t,X)

Передача функций в sdeddo функция для создания объекта obj класса sdeddo:

obj = sdeddo(F, G)      % dX = F(t,X)dt + G(t,X)dW
obj = 
   Class SDEDDO: SDE from Drift and Diffusion Objects
   --------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   --------------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

В этом примере объект отображает дополнительные параметры, связанные с вводом drift и diffusion объекты.

Подробнее

развернуть все

Алгоритмы

При указании требуемых входных параметров в виде массивов они связываются с определенной параметрической формой. Напротив, при указании любого требуемого входного параметра в качестве функции можно настроить практически любую спецификацию.

При обращении к выходным параметрам без входных данных просто возвращается исходная входная спецификация. Таким образом, при вызове этих параметров без входных данных они ведут себя как простые свойства и позволяют проверить тип данных (двойная или функция, или эквивалентно статическая или динамическая) исходной входной спецификации. Это полезно для проверки и разработки методов.

При вызове этих параметров с вводами они ведут себя как функции, создавая впечатление динамического поведения. Параметры принимают время наблюдения t и вектор состояния Xt и возвращают массив соответствующего размера. Даже если исходный ввод был задан как массив, sdeddo рассматривает его как статическую функцию времени и состояния, тем самым гарантируя, что все параметры доступны одним и тем же интерфейсом.

Ссылки

[1] Айт-Сахалия, Яцин. «Тестирование непрерывных временных моделей спотовой процентной ставки». Обзор финансовых исследований, том 9, № 2, апрель 1996 года, стр. 385-426.

[2] Айт-Сахалия, Яцин. «Плотности перехода для процентной ставки и других нелинейных диффузий». Журнал финансов, том 54, № 4, август 1999 года, стр. 1361-95.

[3] Глассермен, Пол. Методы Монте-Карло в финансовой инженерии. Спрингер, 2004.

[4] Корпус, Джон. Опционы, фьючерсы и другие деривативы. 7-е изд., Прентис Холл, 2009.

[5] Джонсон, Норман Ллойд и др. Непрерывные одномерные распределения. 2-е изд., Уайли, 1994.

[6] Шрив, Стивен Э. Стохастическое исчисление для финансов. Спрингер, 2004.

Представлен в R2008a